OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1685–1689

Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics

Bin Gu  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1685-1689 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001685


View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a single-photon-assisted entanglement concentration protocol (ECP) for nonlocal N-photon systems in a partially entangled pure W-class state with linear optical elements. Only one of the N parties in quantum communication prepares an ancillary photon and operates the entanglement concentration process for picking up the standard N-photon W state from each partially entangled pure W-class state by choosing the two-mode instances from a polarization beam splitter. Compared with other ECPs for W-class states, our protocol has some advantages. First, it requires only linear optical elements. Second, it requires an N-photon system and an ancillary photon for each round of concentration, not two systems. Third, only one party asks other parties to retain or discard their photons. All these advantages make our ECP more feasible and more convenient than others.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: April 17, 2012
Manuscript Accepted: May 7, 2012
Published: June 19, 2012

Citation
Bin Gu, "Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics," J. Opt. Soc. Am. B 29, 1685-1689 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
  4. F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
  5. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
  6. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  7. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
  8. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  9. X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
  10. G. L. Long, and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  11. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  12. F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69, 052319 (2004). [CrossRef]
  13. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  14. F. L. Yan and X. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Eur. Phys. J. B 41, 75–78 (2004). [CrossRef]
  15. T. Gao, F. L. Yan, and Z. X. Wang, “Deterministic secure direct communication using GHZ states and swapping quantum entanglement,” J. Phys. A 38, 5761–5770 (2005). [CrossRef]
  16. T. Gao, F. L. Yan, and Z. X. Wang, “Quantum secure conditional direct communication via EPR pairs,” Int. J. Mod. Phys. C 16, 1293 (2005). [CrossRef]
  17. T. Gao, F. L. Yan, and Z. X. Wang, “Controlled quantum teleportation and secure direct communication,” Chin. Phys. 14, 893–897 (2005). [CrossRef]
  18. Z. X. Man, Z. J. Zhang, and Y. Li, “Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations,” Chin. Phys. Lett. 22, 18–21 (2005). [CrossRef]
  19. A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006). [CrossRef]
  20. X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006). [CrossRef]
  21. J. Wang, Q. Zhang, and C. J. Tang, “Quantum secure direct communication based on order rearrangement of single photons,” Phys. Lett. A 358, 256–258 (2006). [CrossRef]
  22. C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state,” Opt. Commun. 253, 15–20 (2005). [CrossRef]
  23. B. Gu, S. X. Pei, B. Song, and K. Zhong, “Deterministic secure quantum communication over a collective-noise channel,” Sci. Chin. Ser. G 52, 1913–1918 (2009). [CrossRef]
  24. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  25. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
  26. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
  27. F. G. Deng, G. L. Long, and H. Y. Zhou, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A 337, 329–334 (2005). [CrossRef]
  28. F. G. Deng, X. H. Li, and H. Y. Zhou, “Efficient high-capacity quantum secret sharing with two-photon entanglement,” Phys. Lett. A 372, 1957–1962 (2008). [CrossRef]
  29. Z. J. Zhang, Y. Li, and Z. X. Man, “Multiparty quantum secret sharing,” Phys. Rev. A 71, 044301 (2005). [CrossRef]
  30. F. L. Yan, and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005). [CrossRef]
  31. F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005). [CrossRef]
  32. B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010). [CrossRef]
  33. B. Gu, C. Q. Li, F. Xu, and Y. L. Chen, “High-capacity three-party quantum secret sharing with superdense coding,” Chin. Phys. B 18, 4690–4694 (2009). [CrossRef]
  34. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
  35. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
  36. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006). [CrossRef]
  37. X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006). [CrossRef]
  38. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
  39. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
  40. J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]
  41. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002). [CrossRef]
  42. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  43. M. Czechlewski, A. Grudka, S. Ishizaka, and A. Wójcik, “Entanglement purification protocol for a mixture of a pure entangled state and a pure product state,” Phys. Rev. A 80, 014303 (2009). [CrossRef]
  44. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  45. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
  46. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
  47. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
  48. F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
  49. C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).
  50. C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25695 (2011). [CrossRef]
  51. Y. B. Sheng, F. G. Deng, B. K. Zhao, T. J. Wang, and H. Y. Zhou, “Multipartite entanglement purification with quantum nondemolition detectors,” Eur. Phys. J. D 55, 235–242 (2009). [CrossRef]
  52. Y. B. Sheng, G. L. Long, and F. G. Deng, “One-step deterministic multipartite entanglement purification with linear optics,” Phys. Lett. A 376, 314–319 (2012). [CrossRef]
  53. B. Gu, Y. L. Chen, C. Y. Zhang, and Y. G. Huang, “Efficient polarization entanglement purification using spatial entanglement,” Chin. Phys. Lett. 27, 100304 (2010). [CrossRef]
  54. X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A 71, 064301 (2005). [CrossRef]
  55. Y. B. Sheng, F. G. Deng, and G. L. Long, “Multipartite electronic entanglement purification with charge detection,” Phys. Lett. A 375, 396–400 (2011). [CrossRef]
  56. M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A 71, 012308 (2005). [CrossRef]
  57. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
  58. S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
  59. B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
  60. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  61. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  62. M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005). [CrossRef]
  63. Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006). [CrossRef]
  64. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  65. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).
  66. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization entanglement concentration for electrons with charge detection,” Phys. Lett. A 373, 1823–1825 (2009). [CrossRef]
  67. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  68. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  69. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
  70. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
  71. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010). [CrossRef]
  72. W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
  73. L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, “Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 630–634 (2012). [CrossRef]
  74. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited