OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1690–1696

Death and revival of the quantum discord and the measurement-induced disturbance

M. de los Angeles Gallego and Miguel Orszag  »View Author Affiliations

JOSA B, Vol. 29, Issue 7, pp. 1690-1696 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three different quantifiers, entanglement of formation (ENT), quantum discord (QD), and measurement-induced disturbance (MID), are used to measure the quantum correlations of two qubits in a common squeezed bath. A subspace was found for initial conditions in a squeezed bath, where the system experiences no decoherence. We relate the three measurements with the “distance” from the initial condition to the decoherence free subspace, in order to study the effect of the decoherence in the quantum correlations. We show examples of a system with quantum correlations even when entanglement is null. Furthermore, we study the necessary conditions for the system to become truly classical. We found that, under certain initial conditions and at specific times, the system becomes classical and both the QD and the MID vanish, thus observing the phenomena of sudden death and revival of the quantum correlations. Finally, we observe discontinuities in the QD.

© 2012 Optical Society of America

OCIS Codes
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 14, 2012
Manuscript Accepted: April 18, 2012
Published: June 19, 2012

M. de los Angeles Gallego and Miguel Orszag, "Death and revival of the quantum discord and the measurement-induced disturbance," J. Opt. Soc. Am. B 29, 1690-1696 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” Rev. Mod. Phys. 75, 715–775 (2003). [CrossRef]
  2. M. Orszag, Quantum Optics (Springer, 2000).
  3. M. Orszag and M. Hernandez, “Coherence and entanglement in a two-qubit system,” Adv. Opt. Photon. 2, 229–286 (2010). [CrossRef]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  5. A. K. Ekert, “Quantum privacy amplification and security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  6. D. Deutsch, A. K. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
  7. C. Bennett, D. DiVicenzo, C. Fuchs, T. Mor, E. Rains, P. Shor, J. Smolin, and W. Wootters, “Quantum non-locality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999). [CrossRef]
  8. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus non-localinformation in quantum information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005). [CrossRef]
  9. J. Niset and N. Cerf, “Multiparticle non-locality without entanglement in many dimensions,” Phys. Rev. A 74, 052103 (2006). [CrossRef]
  10. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999). [CrossRef]
  11. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000). [CrossRef]
  12. A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computing,” Phys. Rev. A 75, 042310 (2007). [CrossRef]
  13. H. Ollivier, and W. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001). [CrossRef]
  14. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001). [CrossRef]
  15. S. Luo, “Using measurement induced disturbance to characterize correlations as classical or quantum,” Phys. Rev. A 77, 022301 (2008). [CrossRef]
  16. D. Mundarain and M. Orszag, “Decoherence-free subspace and entanglement by interaction with a common squeezed bath,” Phys. Rev. A 75, 040303(R) (2007). [CrossRef]
  17. D. A. Lidar and K. B. Whaley, “Decoherence-free subspaces and subsystems,” in Irreversible Quantum Dynamics, Vol. 622 of Lecture Notes in Physics (Springer, 2003), pp. 83–120.
  18. M. Hernandez and M. Orszag, “Decoherence and disentanglement for two qubits in a common squeezed reservoir,” Phys. Rev. A 78, 042114 (2008). [CrossRef]
  19. C. Bennett, D. DiVicenzo, J. Smolin, and W. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996). [CrossRef]
  20. S. Hill and W. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997). [CrossRef]
  21. W. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248(1998). [CrossRef]
  22. L. Wang, J. Huang, and S. Y. Zhu, “A new criteria for zero quantum discord,” New J. Phys. 13, 06345 (2011).
  23. D. Mundarain, M. Orszag, and J. Stephany, “Total quantum Zeno effect and intelligent states for a two-level system in a squeezed bath,” Phys. Rev. A 74, 052107 (2006). [CrossRef]
  24. M. Ikram, F. Li, and M. Zubairy, “Disentanglement in a two-qubit system subjected to dissipation environments,” Phys. Rev. A 75, 062336 (2007). [CrossRef]
  25. S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008). [CrossRef]
  26. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010). [CrossRef]
  27. M. Ali, A. R. P. Rau, and G. Alber, “Erratum: quantum discord for two-qubit X states,” Phys. Rev. A 82, 069902(E) (2010).
  28. B. Dakic, V. Vedral, and C. Brukner, “Necessary and sufficient condition for non-zero quantum discord,” Phys. Rev. Lett. 105, 190502 (2010). [CrossRef]
  29. R. Auccaise, L. C. Celeri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett.107, 140403 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited