Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Complex modes and artificial magnetism in three-dimensional periodic arrays of titanium dioxide microspheres at millimeter waves

Not Accessible

Your library or personal account may give you access

Abstract

We characterize the modes with real and complex wavenumbers for both longitudinal and transverse polarization states (with respect to the mode traveling direction) in three dimensional (3D) periodic arrays of titanium dioxide (TiO2) microspheres in the frequency range between 250 GHz and 350 GHz. Modal results are computed by using a single magnetic dipole approximation (SDA) and an SDA model with correction (SDA-WC) that assumes the array to be embedded in a host with an effective permittivity computed through Maxwell Garnett formulas. Moreover, for the transverse polarization case, modal wavenumbers are computed also by fitting the full-wave simulation magnetic field (one point per unit cell) in a finite thickness structure, and their agreement and disagreement are discussed. The longitudinal polarization is not affected by the artificial correction introduced in the SDA-WC; in the transverse polarization case, instead, the correction is needed to obtain results in better agreement with the full-wave data fit. In the observed frequency range, there are one longitudinal mode and two transverse modes, one forward and one backward, where the forward one is “dominant” (i.e., it contributes mostly to the field in the array). Therefore, in the case of transverse polarization, we describe the composite material in terms of homogenized refractive index and relative permeability, comparing results from (i) modal analysis (with and without correction), (ii) Maxwell Garnett formulas, and (iii) Nicolson–Ross–Weir retrieval method from scattering parameters of finite thickness structures. The agreement among the different methods justifies the performed homogenization procedure in the case of transverse polarization. We show that artificial magnetism is generated from a nonmagnetic composite material.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres

Salvatore Campione, Sergiy Steshenko, Matteo Albani, and Filippo Capolino
Opt. Express 19(27) 26027-26043 (2011)

Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling

Sylvain Lannebère, Salvatore Campione, Ashod Aradian, Matteo Albani, and Filippo Capolino
J. Opt. Soc. Am. B 31(5) 1078-1086 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved