OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1697–1706

Complex modes and artificial magnetism in three-dimensional periodic arrays of titanium dioxide microspheres at millimeter waves

Salvatore Campione, Sylvain Lannebère, Ashod Aradian, Matteo Albani, and Filippo Capolino  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1697-1706 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001697


View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize the modes with real and complex wavenumbers for both longitudinal and transverse polarization states (with respect to the mode traveling direction) in three dimensional (3D) periodic arrays of titanium dioxide ( TiO 2 ) microspheres in the frequency range between 250 GHz and 350 GHz. Modal results are computed by using a single magnetic dipole approximation (SDA) and an SDA model with correction (SDA-WC) that assumes the array to be embedded in a host with an effective permittivity computed through Maxwell Garnett formulas. Moreover, for the transverse polarization case, modal wavenumbers are computed also by fitting the full-wave simulation magnetic field (one point per unit cell) in a finite thickness structure, and their agreement and disagreement are discussed. The longitudinal polarization is not affected by the artificial correction introduced in the SDA-WC; in the transverse polarization case, instead, the correction is needed to obtain results in better agreement with the full-wave data fit. In the observed frequency range, there are one longitudinal mode and two transverse modes, one forward and one backward, where the forward one is “dominant” (i.e., it contributes mostly to the field in the array). Therefore, in the case of transverse polarization, we describe the composite material in terms of homogenized refractive index and relative permeability, comparing results from (i) modal analysis (with and without correction), (ii) Maxwell Garnett formulas, and (iii) Nicolson–Ross–Weir retrieval method from scattering parameters of finite thickness structures. The agreement among the different methods justifies the performed homogenization procedure in the case of transverse polarization. We show that artificial magnetism is generated from a nonmagnetic composite material.

© 2012 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: November 22, 2011
Revised Manuscript: February 14, 2012
Manuscript Accepted: April 3, 2012
Published: June 20, 2012

Citation
Salvatore Campione, Sylvain Lannebère, Ashod Aradian, Matteo Albani, and Filippo Capolino, "Complex modes and artificial magnetism in three-dimensional periodic arrays of titanium dioxide microspheres at millimeter waves," J. Opt. Soc. Am. B 29, 1697-1706 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1697

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited