OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1722–1730

Broadband zero reflection plasmonic junctions

Maryam Farahani, Nosrat Granpayeh, and Mohammad Rezvani  »View Author Affiliations

JOSA B, Vol. 29, Issue 7, pp. 1722-1730 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (848 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Introducing an intermediate section between two metal–insulator–metal plasmonic waveguides with unequal width considerably enhances the transmission spectra of a direct junction. In this paper, we design various junctions based on analytic optimization to obtain maximum power transfer through a junction. Using advantages of quasi-static approximation for subwavelength devices, a pure analytic expression is derived, which leads to broader bandwidth and higher transmittance at given frequency. We achieve zero reflection from 125 to 25 nm width MIM junctions by inserting transition sections consisting of quarter-wavelength and tapered structures between two waveguides. Our analysis and optimization results are numerically validated by the finite-difference time-domain simulation.

© 2012 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(230.7370) Optical devices : Waveguides
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Devices

Original Manuscript: February 22, 2012
Revised Manuscript: May 8, 2012
Manuscript Accepted: May 9, 2012
Published: June 22, 2012

Maryam Farahani, Nosrat Granpayeh, and Mohammad Rezvani, "Broadband zero reflection plasmonic junctions," J. Opt. Soc. Am. B 29, 1722-1730 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000). [CrossRef]
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  5. Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28, 2827–2832 (2011). [CrossRef]
  6. F. Hu and Z. Zhou, “Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities,” J. Opt. Soc. Am. B 28, 2518–2523 (2011). [CrossRef]
  7. D. F. P. Pile and D. K. Gramotnev, “Plasmonic sub wavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005). [CrossRef]
  8. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008). [CrossRef]
  9. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  10. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  11. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006). [CrossRef]
  12. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. De Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253–264 (2011). [CrossRef]
  13. B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010). [CrossRef]
  14. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  15. Z. Han and E. Forsberg, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  16. Q. Huang, R. Liang, P. Chen, S. Wang, and Y. Xu, “High resonant transmission contrast filter based on the dual side-coupled cavities plasmonic structure,” J. Opt. Soc. Am. B 28, 1851–1854 (2011). [CrossRef]
  17. X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009). [CrossRef]
  18. Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, and X.-P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7555 (2009). [CrossRef]
  19. A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides,” Opt. Express 15, 15280–15286 (2007). [CrossRef]
  20. D. S. Citrin, “Subwavelength nanoplasmonic ring resonators,” J. Opt. Soc. Am. B 22, 1763–1769 (2005). [CrossRef]
  21. N. Talebi, A. Mahjoubfar, and M. Shahabadi, “Plasmonic ring resonator,” J. Opt. Soc. Am. B 25, 2116–2122 (2008). [CrossRef]
  22. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009). [CrossRef]
  23. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009). [CrossRef]
  24. C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton waves,” J. Opt. Soc. Am. B 25, 1387–1392 (2008). [CrossRef]
  25. Y. Liu and J. Kim, “Plasmonic modulation and switching via combined utilization of Young interference and metal–insulator–metal waveguide coupling,” J. Opt. Soc. Am. B 28, 2712–2717 (2011). [CrossRef]
  26. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27, 2707–2713 (2010). [CrossRef]
  27. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011). [CrossRef]
  28. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007). [CrossRef]
  29. Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron 14, 1462–1472 (2008). [CrossRef]
  30. A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions,” IEEE Photon. J. 3, 220–233 (2011). [CrossRef]
  31. S. C. Hagness, A. Taflove, and S. D. Gedney, “Finite-difference time-domain methods,” in Vol. XIII of Handbook of Numerical Analysis, W. H. A. Schilders and E. J. W. ter Maten, eds. (Elsevier-North Holland, 2005), pp. 199–315.
  32. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283(1998). [CrossRef]
  33. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  34. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits(Pan Stanford, 2008).
  35. G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  36. R. E. Collin, Foundations for Microwave Engineering (IEEE, 2000).
  37. M. A. Parker, Physics of Optoelectronics (CRC Press, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited