OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1731–1743

Strong self-focusing of axial symmetric laser beam due to quadratic nonlinearity

Vyacheslav A. Trofimov and Tatiana M. Lysak  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1731-1743 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001731


View Full Text Article

Enhanced HTML    Acrobat PDF (1098 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Strong self-focusing and defocusing of optical radiation with Gaussian spatial and temporal distribution due to cascading second harmonic generation without a significant change in the beam profile and the pulse shape for the fundamental wave under the condition of group velocity matching in the axial-symmetric case for a bulk medium is considered, and the maximum intensity of an optical beam increases in 70 times (or more) in comparison with the intensity of incident optical radiation. This result is obtained for pulse duration, which belongs to a time interval from microseconds to picoseconds, for which the dispersion of group velocity is negligible. Self-focusing of laser radiation allows the realization of the mode that is similar to Kerr-lens mode locking, but for laser systems generating the optical radiation with a duration from microseconds to picoseconds.

© 2012 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 2, 2011
Revised Manuscript: January 16, 2012
Manuscript Accepted: February 16, 2012
Published: June 22, 2012

Citation
Vyacheslav A. Trofimov and Tatiana M. Lysak, "Strong self-focusing of axial symmetric laser beam due to quadratic nonlinearity," J. Opt. Soc. Am. B 29, 1731-1743 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Bergé, O. Bang, J. Juul Rasmussen, and V. K. Mezentsev, “Self-focusing and soliton-like structures in material with competing quadratic and cubic nonlinearity,” Phys. Rev. E 55, 3555–3570 (1997). [CrossRef]
  2. L. Berge, V. K. Mezentsev, J. Juul Rasmussen, and J. Wyller, “Formation of stable solitons in quadratic nonlinear media,” Phys. Rev. A 52, R28–R31 (1995). [CrossRef]
  3. A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002). [CrossRef]
  4. G. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  5. S. Ashihara, J. Nishina, T. Shimuraa, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002). [CrossRef]
  6. G. I. Stegeman, R. Schiek, H. Fang, R. Malendevich, L. Jankovic, L. Torner, W. Sohle, and G. Schreiber, “Beam evolution in quadratically nonlinear one-dimensional media: LiNbO3 slab waveguides,” Laser Phys. 13, 137–147 (2003).
  7. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631–4634 (1999). [CrossRef]
  8. K. Mori, Y. Tamaki, M. Obara, and K. Midorikawa, “Second-harmonic generation of femtosecond high-intensity Ti:sapphire laser pulses,” J. Appl. Phys. 83, 2915–2919 (1998). [CrossRef]
  9. A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett. 23, 1441–1443 (1998). [CrossRef]
  10. X. Zeng, S. Ashihara, T. Shimura, and K. Kuroda, “Adiabatic femtosecond pulse compression and control by using quadratic cascading nonlinearity,” Proc. SPIE 6839, 68390B (2007). [CrossRef]
  11. G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, “Multi-stage pulse compression by use of cascaded quadratic nonlinearity,” Opt. Commun. 273, 207–213 (2007). [CrossRef]
  12. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999). [CrossRef]
  13. X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, “Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings,” Opt. Express 14, 9358–9370 (2006). [CrossRef]
  14. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007). [CrossRef]
  15. P. Loza-Alvarez, D. T. Reid, P. Faller, M. Ebrahimzadeh, and W. Sibbett, “Simultaneous second-harmonic generation and femtosecond-pulse compression in aperiodically poled KTiOPO4 with a RbTiOAsO4-based optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1553–1560 (1999). [CrossRef]
  16. C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis, “Effective lensing effects in parametric frequency conversion,” J. Opt. Soc. Am. B 19, 852–859 (2002). [CrossRef]
  17. P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities in self-trapping due to parametric frequency conversion,” Phys. Rev. Lett. 87, 183902 (2001). [CrossRef]
  18. S. Minardi, J. Yu, G. Blasi, A. Varanavičius, G. Valiulis, A. Beržanskis, A. Piskarskas, and P. Di Trapani, “Red solitons: evidence of spatiotemporal instability in χ(2) spatial soliton dynamics,” Phys. Rev. Lett. 91, 123901 (2003). [CrossRef]
  19. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and E. W. Van Stryland, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992). [CrossRef]
  20. K. Beckitt, F. Wise, L. Qian, L. A. Walker, and E. Canto-Said, “Compensation for self-focusing by use of cascade quadratic nonlinearity,” Opt. Lett. 26, 1696–1698 (2001). [CrossRef]
  21. M. V. Komissarova, A. P. Sukhorukov, and V. A. Trofimov, “Self-compression of the fundamental and second-harmonic pulses in media with quadratic and cubic nonlinearities,” Bull. Russ. Acad. Sci. Phys. Suppl. Phys. Vibrat. 57, 189–192 (1993).
  22. V. A. Trofimov and V. V. Trofimov, “On compression of femtosecond pulses with basic and doubled frequencies,” Proc. SPIE 6165, 616502 (2006). [CrossRef]
  23. V. A. Trofimov and V. V. Trofimov, “Formation of intensive pulses with super short duration under the cascading SHG in bulk medium,” in Proceedings of the 8th International Conference on Laser and Fiber-Optical Networks Modeling (FNM’06) (IEEE, 2006), pp. 403–406.
  24. V. A. Trofimov and V. V. Trofimov, “High effective SHG of femtosecond pulse with ring profile of beam in bulk medium with cubic nonlinear response,” Proc. SPIE 6610, 66100R (2007). [CrossRef]
  25. V. Yanovsky, Y. Pang, F. Wise, and B. I. Minkov, “Generation of 25 fs pulses from a self-mode-locked Cr:forsterite laser with optimized group delay dispersion,” Opt. Lett. 18, 1541–1543 (1993). [CrossRef]
  26. V. Yanovsky and F. Wise, “Frequency doubling of 100 fs pulses with 50% efficiency by use of a resonant enhancement cavity,” Opt. Lett. 19, 1952–1954 (1994). [CrossRef]
  27. D. E. Spence, P. N. Kean, and W. Sibbett, “60 fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991). [CrossRef]
  28. N. H. Rizvi, P. M. W. French, and J. R. Taylor, “50 fs pulse generation from a self-starting cw passively mode-locked Cr:LiSrAlF6 laser,” Opt. Lett. 17, 877–879 (1992). [CrossRef]
  29. P. LiKamWa, B. H. T. Chai, and A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438–1440 (1992). [CrossRef]
  30. Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt. Lett. 18, 1168–1170 (1993). [CrossRef]
  31. V. A. Trofimov and T. M. Lysak, “Highly efficient SHG of a sequence of laser pulses with a random peak intensity and duration,” Opt. Spectrosc. 107, 399–406 (2009). [CrossRef]
  32. V. A. Trofimov and T. M. Lysak, “Catastrophic self-focusing of axially symmetric laser beams due to cascading SHG,” in Technical Program of 14th International Conference on Laser Optics (LO-2010) (IOP, 2010), p. 27.
  33. V. A. Trofimov and T. M. Lysak, “Catastrophic self-focusing of axially symmetric laser beams due to cascading SHG,” Proc. SPIE 7822, 78220E (2011).
  34. T. M. Lysak and V. A. Trofimov, “Achieving high-efficiency second harmonic generation in a sequence of laser pulses with random peak intensity. Part I. Efficient generation in optical fibers,” Comput. Math. Model. 19, 333–342 (2008). [CrossRef]
  35. T. M. Lysak and V. A. Trofimov, “Achieving high-efficiency second harmonic generation in a sequence of laser pulses with random peak intensity. Part II. Suppression of intensity fluctuations in a quadratic-nonlinearity medium,” Computat. Math. Model. 20, 1–25 (2009). [CrossRef]
  36. T. M. Lysak and V. A. Trofimov, “Achieving high-efficiency second harmonic generation in a sequence of laser pulses with random peak intensity. Part III. Propagation of pulses in a bulk medium,” Comput. Math. Model. 20, 101–112 (2009). [CrossRef]
  37. L. J. Qian, X. Liu, and F. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited