## One-step preparation of three-particle Greenberger–Horne–Zeilinger states in cavity quantum electrodynamics |

JOSA B, Vol. 29, Issue 7, pp. 1744-1749 (2012)

http://dx.doi.org/10.1364/JOSAB.29.001744

Enhanced HTML Acrobat PDF (621 KB)

### Abstract

We propose two schemes to one-step generate the three-particle Greenberger–Horne–Zeilinger state based on the resonant atom–cavity fields interaction. The whole process may be realized experimentally providing that simple apparatus, initial conditions, and some manipulation in principle are achieved. Finally, in the current or the near future experiment parameter, we show that the proposed schemes can maintain the state with high fidelity under the condition of atomic spontaneous emission and decay of cavity fields.

© 2012 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: November 22, 2011

Revised Manuscript: February 16, 2012

Manuscript Accepted: February 26, 2012

Published: June 22, 2012

**Citation**

Zi-hong Chen, Pei Pei, Feng-yang Zhang, and He-shan Song, "One-step preparation of three-particle Greenberger–Horne–Zeilinger states in cavity quantum electrodynamics," J. Opt. Soc. Am. B **29**, 1744-1749 (2012)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1744

Sort: Year | Journal | Reset

### References

- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
- D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computer,” Proc. R. Soc. Lond. A 439, 553–558(1992). [CrossRef]
- C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
- M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
- A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
- R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999). [CrossRef]
- V. Bužek and M. Hillery, “Quantum copying: beyond the no-cloning theorem,” Phys. Rev. A 54, 1844–1852 (1996). [CrossRef]
- J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfuter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000). [CrossRef]
- J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physics 1, 195–200 (1964).
- A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
- D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990). [CrossRef]
- W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
- J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
- R. Miller, T. E. Northup, K. M. Bimaum, A. Boca, A. D. Boozer, and H. J. Kimble, “Trapped atoms in cavity QED: coupling quantized light and matter,” J. Phys. B 38, S551–S565 (2005). [CrossRef]
- H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006). [CrossRef]
- J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995). [CrossRef]
- J. Q. You and F. Nori, “Superconducting circuits and quantum information,” Phys. Today 58, 42–47 (2005). [CrossRef]
- D. Loss and D. P. Divincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998). [CrossRef]
- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
- E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997). [CrossRef]
- A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000). [CrossRef]
- A. Auffeves, P. Maioli, T. Meunier, S. Gleyzes, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Entanglement of a mesoscopic field with an atom induced by photon graininess in a cavity,” Phys. Rev. Lett. 91, 230405 (2003). [CrossRef]
- A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301 (2001). [CrossRef]
- B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009). [CrossRef]
- C. C. Gerry, “Preparation of multiatom entangled states through dispersive atom–cavity-field interactions,” Phys. Rev. A 53, 2857–2860 (1996). [CrossRef]
- S. B. Zheng, “Simplified realization of multi-atom Greenberger–Horne–Zeilinger states with dispersive cavity QED,” Opt. Commun. 171, 77–80 (1999). [CrossRef]
- J. I. Cirac and P. Zoller, “Preparation of macroscopic superpositions in many-atom systems,” Phys. Rev. A 50, R2799–R2802 (1994). [CrossRef]
- S. B. Zheng, “Generation of multi-atom entangled states via the Raman atom-cavity-field interaction,” Chin. Phys. Lett. 7, 485–487 (1997). [CrossRef]
- M. Ikram and F. Saif, “Engineering entanglement between two cavity modes,” Phys. Rev. A 66, 014304 (2002). [CrossRef]
- C. P. Yang, “Preparation of n-qubit Greenberger–Horne–Zeilinger entangled states in cavity QED: an approach with tolerance to nonidentical qubit-cavity coupling constants,” Phys. Rev. A 83, 062302 (2011). [CrossRef]
- A. H. Khosa, R. Islam, and F. Saif, “Remote preparation of atomic and field cluster states from a pair of tri-partite GHZ states,” Chin. Phys. B 19, 040309 (2010). [CrossRef]
- C. S. Yu, X. X. Yi, and H. S. Song, “Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007). [CrossRef]
- D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008). [CrossRef]
- X. B. Zou, K. Pahlke, and W. Mathis, “Quantum entanglement of four distant atoms trapped in different optical cavities,” Phys. Rev. A 69, 052314 (2004). [CrossRef]
- T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997). [CrossRef]
- A. Zheng and J. Liu, “Generation of an N-qubit Greenberger–Horne–Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B 44, 165501 (2011). [CrossRef]
- Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011). [CrossRef]
- X. Y. Lü, P. J. Song, J. B. Liu, and X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009). [CrossRef]
- X. Y. Lü, L. G. Si, X. Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009). [CrossRef]
- S. B. Zheng, “One-step synthesis of multiatom Greenberger–Horne–Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001). [CrossRef]
- J. Lee, J. Park, S. M. Lee, H. W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008). [CrossRef]
- A. Biswas and G. S. Agarwal, “Transfer of an unknown quantum state, quantum networks and memory,” Phys. Rev. A 70, 022323 (2004). [CrossRef]
- Z. Li, J. Jin, and C. Yu, “Probing quantum entanglement, quantum discord, classical correlation and the quantum state without disturbing them,” Phys. Rev. A 83, 012317 (2011). [CrossRef]
- S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deleglise, S. Osnaghi, M. Brune, J. M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007). [CrossRef]
- M. Knap, E. Arrigoni, and W. Lindern, “Spectral properties of coupled cavity arrays in one dimension,” Phys. Rev. B 81, 104303 (2010). [CrossRef]
- D. Rossini and R. Fazio, “Mott-insulating and glassy phases of polaritons in 1D arrays of coupled cavities,” Phys. Rev. Lett. 99, 186401 (2007). [CrossRef]
- E. K. Irish, “Ground-state entanglement in a coupled-cavity model,” Phys. Rev. A 80, 043825 (2009). [CrossRef]
- J. Cho, D. G. Angelakis, and S. Bose, “Fractional quantum hall state in coupled cavities,” Phys. Rev. Lett. 101, 246809 (2008). [CrossRef]
- J. Song, X. D. Sun, Y. Xia, and H. S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011). [CrossRef]
- C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008). [CrossRef]
- Z. Q. Yi and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
- M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.