OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1750–1765

Higher-order core-guided modes in two-dimensional photonic bandgap fibers

Vincent Pureur and Boris T. Kuhlmey  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1750-1765 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001750


View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically and theoretically investigate the core modes of two-dimensional solid-core photonic bandgap (PBG) fibers based on hexagonal arrays of high-index circular rods. Such fibers guide light in discrete bandgaps, and the number of core-guided modes depends on the order of the bandgap as well as the position within the bandgap. We first classify the different core-guided modes in such fibers and we discuss the links among band structure, losses, and number and type of modes. We demonstrate that, similar to the case of bandgapless Kagome and ring-based fibers, solid-core bandgap fibers can have core-guided modes that are within photonic bands of the cladding. We discuss the classification of core modes in such fibers, and highlight analogies and differences with that of index-guiding fibers. Through an asymptotic expansion of an analytic model of a fiber’s photonic bands, we show that, in the limit of higher-order gaps (i.e., short wavelengths), the number of modes in the middle of gaps tends to a constant that is independent of refractive index contrast, as is the case for index-guiding photonic crystal fibers. We also discuss the evolution of the effectively single-mode propagation regime with geometrical parameters of structures having constant or variable band diagrams. For small- and large-core PBG fibers, we compute the exact number of core-guided modes within the center of the transmission band. We discuss their evolution with gap orders and coupling strength between high-index inclusions in the cladding. We find good agreement of the core-guided mode number in the center of the gaps computed with our theoretical model and with a numerical method for short wavelengths.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 18, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: May 18, 2012
Published: June 25, 2012

Citation
Vincent Pureur and Boris T. Kuhlmey, "Higher-order core-guided modes in two-dimensional photonic bandgap fibers," J. Opt. Soc. Am. B 29, 1750-1765 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1750


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Knight, T. Birks, P. Russel, and D. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef]
  3. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core omniguide fibers,” Opt. Express 9, 748–779 (2001). [CrossRef]
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef]
  5. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004). [CrossRef]
  6. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002). [CrossRef]
  7. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20  dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005). [CrossRef]
  8. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27, 1617–1630 (2009). [CrossRef]
  9. V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35, 2813–2815 (2010). [CrossRef]
  10. T. Taru and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in 33rd European Conference and Exhibition of Optical Communication (IEEE, 2007), pp. 1–2.
  11. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008). [CrossRef]
  12. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngs, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18, 16345–16352 (2010). [CrossRef]
  13. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238–9243 (2006). [CrossRef]
  14. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27, 1684–1686 (2002). [CrossRef]
  15. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267–274 (2005). [CrossRef]
  16. B. T. Kuhlmey, “Theoretical and numerical investigation of the physics of microstructured optical fibres,” Ph.D. dissertation (University of Sydney and Université Aix-Marseille III, 2003), http://hdl.handle.net/2123/560 .
  17. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30, 1264–1266 (2005). [CrossRef]
  18. N. A. Mortensen, “Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers,” Opt. Lett. 30, 1455–1457 (2005). [CrossRef]
  19. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Lightwave Technol. 23, 4169–4177 (2005). [CrossRef]
  20. V. Pureur, J. C. Knight, and B. T. Kuhlmey, “Higher order guided mode propagation in solid-core photonic bandgap fibers,” Opt. Express 18, 8906–8915 (2010). [CrossRef]
  21. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11, 1310–1321 (2003). [CrossRef]
  22. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002). [CrossRef]
  23. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibers,” Opt. Express 14, 5688–5698 (2006). [CrossRef]
  24. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  25. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibers,” Opt. Express 14, 9483–9490 (2006). [CrossRef]
  26. P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14, 8797–8811 (2006). [CrossRef]
  27. A. Snyder and J. Love, Optical Waveguide Theory (Kluwer Academic, 1983).
  28. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microwave Theory Tech. MTT-23, 421–429 (1975). [CrossRef]
  29. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007). [CrossRef]
  30. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007). [CrossRef]
  31. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008). [CrossRef]
  32. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express 18, 25556–25566 (2010). [CrossRef]
  33. T. White, R. McPhedran, L. Botten, G. Smith, and C. M. de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method,” Opt. Express 9, 721–732 (2001). [CrossRef]
  34. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  35. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004). [CrossRef]
  36. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650  μm2,” Opt. Lett. 37, 1292–1294 (2012). [CrossRef]
  37. B. Ward, “Solid-core photonic bandgap fibers for cladding-pumped Raman amplification,” Opt. Express 19, 11852–11866 (2011). [CrossRef]
  38. P. D. Rasmussen, J. Lægsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Opt. Express 16, 4059–4068 (2008). [CrossRef]
  39. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008). [CrossRef]
  40. V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009). [CrossRef]
  41. Y. Ould-Agha, A. Bétourné, O. Vanvincq, G. Bouwmans, and Y. Quiquempois, “Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber,” Opt. Express 20, 6746–6760 (2012). [CrossRef]
  42. V. Pureur and J. M. Dudley, “Design of solid core photonic bandgap fibers for visible supercontinuum generation,” Opt. Commun. 284, 1661–1668 (2011). [CrossRef]
  43. O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20 m mode-field diameter,” Opt. Express 16, 11735–11740 (2008). [CrossRef]
  44. BandSOLVE 4.1 (Rsoft Design Group, Inc., 2008).
  45. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited