OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1750–1765

Higher-order core-guided modes in two-dimensional photonic bandgap fibers

Vincent Pureur and Boris T. Kuhlmey  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1750-1765 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001750


View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically and theoretically investigate the core modes of two-dimensional solid-core photonic bandgap (PBG) fibers based on hexagonal arrays of high-index circular rods. Such fibers guide light in discrete bandgaps, and the number of core-guided modes depends on the order of the bandgap as well as the position within the bandgap. We first classify the different core-guided modes in such fibers and we discuss the links among band structure, losses, and number and type of modes. We demonstrate that, similar to the case of bandgapless Kagome and ring-based fibers, solid-core bandgap fibers can have core-guided modes that are within photonic bands of the cladding. We discuss the classification of core modes in such fibers, and highlight analogies and differences with that of index-guiding fibers. Through an asymptotic expansion of an analytic model of a fiber’s photonic bands, we show that, in the limit of higher-order gaps (i.e., short wavelengths), the number of modes in the middle of gaps tends to a constant that is independent of refractive index contrast, as is the case for index-guiding photonic crystal fibers. We also discuss the evolution of the effectively single-mode propagation regime with geometrical parameters of structures having constant or variable band diagrams. For small- and large-core PBG fibers, we compute the exact number of core-guided modes within the center of the transmission band. We discuss their evolution with gap orders and coupling strength between high-index inclusions in the cladding. We find good agreement of the core-guided mode number in the center of the gaps computed with our theoretical model and with a numerical method for short wavelengths.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 18, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: May 18, 2012
Published: June 25, 2012

Citation
Vincent Pureur and Boris T. Kuhlmey, "Higher-order core-guided modes in two-dimensional photonic bandgap fibers," J. Opt. Soc. Am. B 29, 1750-1765 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1750

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited