OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1766–1771

Coherent response of individual weakly confined exciton–biexciton systems

Jacek Kasprzak and Wolfgang Langbein  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1766-1771 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001766


View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the coherent optical response of individual localized exciton–biexciton (XXX) systems formed at interface fluctuations of a growth-interrupted GaAs/AlAs quantum well. We apply heterodyne spectral interferometry to perform two-dimensional four-wave mixing (FWM) spectroscopy. We retrieve the binding energy of bound and unbound XXs, as well as characterize the system in terms of biexciton–exciton dipole moment ratio and mutual FWM phase. Polarization selection rules of the FWM are determined. FWM hyperspectral imaging and autocorrelation analysis reveal the expected spatial colocalization of XXs with respect to their Xs. A value for the biexciton renormalization in a coherently coupled pair of Xs is retrieved. Our study gives insight into the coherent optical properties of an exciton–biexciton system with a confinement energy comparable to the biexciton binding energy.

© 2012 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(270.1670) Quantum optics : Coherent optical effects
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(300.6310) Spectroscopy : Spectroscopy, heterodyne

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 22, 2012
Revised Manuscript: May 1, 2012
Manuscript Accepted: May 1, 2012
Published: June 25, 2012

Citation
Jacek Kasprzak and Wolfgang Langbein, "Coherent response of individual weakly confined exciton–biexciton systems," J. Opt. Soc. Am. B 29, 1766-1771 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Lampert, “Mobile and immobile effective-mass-particle complexes in nonmetallic solids,” Phys. Rev. Lett. 1, 450–453 (1958). [CrossRef]
  2. J. R. Haynes, “Experimental observation of the excitonic molecule,” Phys. Rev. Lett. 17, 860–862 (1966). [CrossRef]
  3. H. Akiyama, T. Kuga, M. Matsuoka, and M. Kuwata-Gonokami, “Radiative decay and phonon scattering of biexcitons in CuCl,” Phys. Rev. B 42, 5621–5625 (1990). [CrossRef]
  4. U. Woggon, K. Hild, F. Gindele, W. Langbein, M. Hetterich, M. Grün, and C. Klingshirn, “Huge binding energy of localized biexcitons in CdS/ZnS quantum structures,” Phys. Rev. B 61, 12632–12635 (2000). [CrossRef]
  5. T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and E. O. Göbel, “Disorder mediated biexcitonic beats in semiconductor quantum wells,” Phys. Rev. B 54, 4436–4439 (1996). [CrossRef]
  6. A. Euteneuer, J. Möbius, R. Rettig, E. J. Mayer, M. Hofmann, W. Stolz, E. O. Göbel, and W. W. Rühle, “Biexcitonic binding energies in the transition regime from three- to two-dimensional semiconductors,” Phys. Rev. B 56, R10028–R10031 (1997). [CrossRef]
  7. W. Langbein and J. M. Hvam, “Localized biexcitons in quasi-2D and quasi-3D systems,” Phys. Stat. Sol. B 206, 111–118 (1998). [CrossRef]
  8. W. Langbein and J. M. Hvam, “Localization-enhanced biexciton binding in semiconductors,” Phys. Rev. B 59, 15405–15408 (1999). [CrossRef]
  9. W. Langbein and J. M. Hvam, “Dephasing in the quasi two-dimensional exciton-biexciton system,” Phys. Rev. B 61, 1692–1695 (2000). [CrossRef]
  10. W. Langbein, T. Meier, S. Koch, and J. Hvam, “Spectral signatures of χ(5) processes in four-wave mixing of homogeneously broadened excitons,” J. Opt. Soc. Am. B 18, 1318–1325 (2001). [CrossRef]
  11. W. Langbein and J. M. Hvam, “Biexcitonic bound and continuum states of homogeneously and inhomogeneously broadened exciton resonances,” Phys. Stat. Sol. A 190, 167–174 (2002). [CrossRef]
  12. S. R. Bolton, U. Neukirch, L. J. Sham, D. S. Chemla, and V. M. Axt, “Demonstration of sixth-order coulomb correlations in a semiconductor single quantum well,” Phys. Rev. Lett. 85, 2002–2005 (2000). [CrossRef]
  13. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009). [CrossRef]
  14. A. D. Bristow, D. Karaiskaj, X. Dai, R. P. Mirin, and S. T. Cundiff, “Polarization dependence of semiconductor exciton and biexciton contributions to phase-resolved optical two-dimensional Fourier-transform spectra,” Phys. Rev. B 79, 161305 (2009). [CrossRef]
  15. D. B. Turner and K. A. Nelson, “Coherent measurements of high-order electronic correlations in quantum wells,” Nature 466, 1089–1092 (2010). [CrossRef]
  16. D. Karaiskaj, A. D. Bristow, L. Yang, X. Dai, R. P. Mirin, S. Mukamel, and S. T. Cundiff, “Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells,” Phys. Rev. Lett. 104, 117401 (2010). [CrossRef]
  17. D. B. Turner, P. Wen, D. H. Arias, and K. A. Nelson, “Coherent two-exciton dynamics measured using two-quantum rephasing two-dimensional electronic spectroscopy,” Phys. Rev. B 84, 165321 (2011). [CrossRef]
  18. W. Langbein and B. Patton, “Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems,” Opt. Lett. 31, 1151–1153 (2006). [CrossRef]
  19. W. Langbein and B. Patton, “Transient coherent nonlinear spectroscopy of single quantum dots,” J. Phys. Condens. Matter 19, 295203 (2007). [CrossRef]
  20. D. Gammon, B. V. Shanabrook, and D. S. Katzer, “Interfaces in GaAs/AlAs quantum well structures,” Appl. Phys. Lett. 57, 2710–2712 (1990). [CrossRef]
  21. K. Leosson, J. R. Jensen, W. Langbein, and J. M. Hvam, “Exciton localization and interface roughness in growth-interrupted GaAs/AlAs quantum wells,” Phys. Rev. B 61, 10322–10329 (2000). [CrossRef]
  22. V. Savona, and W. Langbein, “Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells,” Phys. Rev. B 74, 075311 (2006). [CrossRef]
  23. J. Kasprzak, B. Patton, V. Savona, and W. Langbein, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nat. Photon. 5, 57–63 (2011). [CrossRef]
  24. W. Langbein, and B. Patton, “Microscopic measurement of photon echo formation in groups of individual excitonic transitions,” Phys. Rev. Lett. 95, 017403 (2005). [CrossRef]
  25. B. Patton, U. Woggon, and W. Langbein, “Coherent control and polarization readout of individual excitonic states,” Phys. Rev. Lett. 95, 266401 (2005). [CrossRef]
  26. Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006). [CrossRef]
  27. J. Kasprzak and W. Langbein, “Vectorial four-wave mixing field dynamics from individual excitonic transitions,” Phys. Rev. B 78, 041103R (2008). [CrossRef]
  28. J. Kasprzak and W. Langbein, “Four-wave mixing from individual excitons: Intensity dependence and imaging,” Phys. Stat. Sol. B 246, 820–823 (2009). [CrossRef]
  29. E. T. Batteh, J. Cheng, G. Chen, D. G. Steel, D. Gammon, D. S. Katzer, and D. Park, “Coherent nonlinear optical spectroscopy of fluctuation quantum dots: evidence for coupling between quantum dots,” Phys. Rev. B 71, 155327 (2005). [CrossRef]
  30. G. Chen, T. H. Stievater, E. T. Batteh, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Biexciton quantum coherence in a single quantum dot,” Phys. Rev. Lett. 88, 117901 (2002). [CrossRef]
  31. X. Li, Y. Wu, X. Xu, D. G. Steel, and D. Gammon, “Transient nonlinear optical spectroscopy studies involving biexciton coherence in single quantum dots,” Phys. Rev. B 73, 153304 (2006). [CrossRef]
  32. P. Borri and W. Langbein, in Semiconductor Quantum Bits, F. Henneberger and O. Benson, eds. (Pan Stanford, 2009), pp. 269–320.
  33. W. Langbein, “Coherent optical spectroscopy of semiconductor nanostructures,” Riv. Nuovo Cimento 33, 255–312(2010).
  34. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995). [CrossRef]
  35. W. Langbein, J. M. Hvam, M. Umlauff, H. Kalt, B. Jobst, and D. Hommel, “Binding-energy distribution and dephasing of localized biexcitons,” Phys. Rev. B 55, R7383–R7386(1997). [CrossRef]
  36. A. V. Filinov, C. Riva, F. M. Peeters, Y. E. Lozovik, and M. Bonitz, “Influence of well-width fluctuations on the binding energy of excitons, charged excitons and biexcitons in GaAs-based quantum wells,” Phys. Rev. B 70, 035323 (2004). [CrossRef]
  37. K. B. Ferrio and D. G. Steel, “Raman quantum beats of interacting excitons,” Phys. Rev. Lett. 80, 786–789 (1998). [CrossRef]
  38. X. Li, Y. Wu, D. G. Steel, D. Gammon, and L. J. Sham, “Raman coherence beats from the entangled state involving polarized excitons in single quantum dots,” Phys. Rev. B 70, 195330 (2004). [CrossRef]
  39. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003). [CrossRef]
  40. Y. Sugimoto, T. Saiki, and S. Nomura, “Visualization of weak confinement potentials by near-field optical imaging spectroscopy of exciton and biexciton in a single quantum dot,” Appl. Phys. Lett. 93, 083116 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited