OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1772–1777

Unified theoretical model for calculating laser-induced wavefront distortion in optical materials

Luis C. Malacarne, Nelson G. C. Astrath, and Mauro L. Baesso  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1772-1777 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001772


View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced thermal lens in optical components causes wavefront distortion of the laser beam and may affect performance and stability of optical systems such as high-power lasers. The bulging of the heated area, the temperature dependence of the refractive index, and the photoelastic effects are responsible for phase shifts damaging beam quality. The theoretical background for laser-induced beam distortion is well understood and applies only for axially symmetric thermal loadings, with the assumptions that the stresses follow thin-disk or long-rod approximations. This, in fact, limits the overall applications of this model. In this work, we developed an unified theoretical model for the optical path change in optical materials regardless of its thickness. The modeling is based on the solution of the thermoelastic equation and has a real description of the surface deformation caused in the optical element. In the appropriated limits, as expected, the model retrieves the thin-disk and the long-rod type distributions. Furthermore, we provided time-dependent radial expressions for the temperature, surface displacement, and stresses. The theory presented in this paper provides simple analytical tools for designing laser systems, and complements previous work allowing one to access optical distortions of materials ranging from thin-disk to long-rod-like distributions.

© 2012 Optical Society of America

OCIS Codes
(240.6700) Optics at surfaces : Surfaces
(350.5340) Other areas of optics : Photothermal effects
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 3, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: May 16, 2012
Published: June 25, 2012

Virtual Issues
July 20, 2012 Spotlight on Optics

Citation
Luis C. Malacarne, Nelson G. C. Astrath, and Mauro L. Baesso, "Unified theoretical model for calculating laser-induced wavefront distortion in optical materials," J. Opt. Soc. Am. B 29, 1772-1777 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Zhao, J. Degallaix, L. Ju, Y. Fan, D. G. Blair, B. J. J. Slagmolen, M. B. Gray, C. M. Mow Lowry, D. E. McClelland, D. J. Hosken, D. Mudge, A. Brooks, J. Munch, P. J. Veitch, M. A. Barton, and G. Billingsley, “Compensation of strong thermal lensing in high-optical-power cavities,” Phys. Rev. Lett. 96, 231101(2006). [CrossRef]
  2. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, “Heating bu optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991). [CrossRef]
  3. M. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971). [CrossRef]
  4. C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29, 343–350 (1990). [CrossRef]
  5. C. A. Klein, “Describing beam-aberration effects induced by laser-light transmitting components: a short account of Raytheon’s contribution,” Proc. SPIE 4376, 24–34 (2001). [CrossRef]
  6. C. A. Klein, “Analytical stress modeling of high-energy laser windows: Application to fusion-cast calcium fluoride windows,” J. Appl. Phys. 98, 043103 (2005). [CrossRef]
  7. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321–331 (2002). [CrossRef]
  8. Y. Peng, Z. Sheng, H. Zhang, and X. Fan, “Influence of thermal deformations of the output windows of high-power laser systems on beam characteristics,” Appl. Opt. 43, 6465–6472 (2004). [CrossRef]
  9. W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text (Springer, 2003).
  10. J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin-film samples,” J. Appl. Phys. 75, 3738–3748 (1994). [CrossRef]
  11. N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K,” Phys. Rev. B 71, 214202 (2005). [CrossRef]
  12. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso, “Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials,” Opt. Lett. 33, 1464–1466 (2008). [CrossRef]
  13. N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett. 91, 191908 (2007). [CrossRef]
  14. F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Time-resolved thermal mirror method: A theoretical study,” J. Appl. Phys. 104, 053520 (2008). [CrossRef]
  15. L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievcz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: A complete model for material characterization,” Appl. Spectrosc. 65, 99–104 (2011). [CrossRef]
  16. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, 1959), Vol. 1, p. 78.
  17. W. Nowacki, Thermoelasticity (Pergamon, 1982), Vol. 3, p. 11.
  18. N. G. C. Astrath, L. C. Malacarne, V. S. Zanuto, M. P. Belancon, R. S. Mendes, M. L. Baesso, and C. Jacinto, “Finite-size effect on the surface deformation thermal mirror method,” J. Opt. Soc. Am. B 28, 1735–1739 (2011). [CrossRef]
  19. R. Herloski, “Strehl ratio for untruncated aberrated Gaussian beams,” J. Opt. Soc. Am. A 2, 1027–1030 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited