OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1784–1792

High-vacuum-compatible high-power Faraday isolators for gravitational-wave interferometers

Oleg V. Palashov, Dmitry S. Zheleznov, Alexander V. Voitovich, Victor V. Zelenogorsky, Eugene E. Kamenetsky, Efim A. Khazanov, Rodica M. Martin, Katherine L. Dooley, Luke Williams, Antonio Lucianetti, Volker Quetschke, Guido Mueller, David H. Reitze, David B. Tanner, Eric Genin, Benjamin Canuel, and Julien Marque  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1784-1792 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001784


View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Faraday isolators play a key role in the operation of large-scale gravitational-wave detectors. Second-generation gravitational-wave interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo will use high-average-power cw lasers (up to 200 W) requiring specially designed Faraday isolators that are immune to the effects resulting from the laser beam absorption–degraded isolation ratio, thermal lensing, and thermally induced beam steering. In this paper, we present a comprehensive study of Faraday isolators designed specifically for high-performance operation in high-power gravitational-wave interferometers.

© 2012 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(230.2240) Optical devices : Faraday effect
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems

ToC Category:
Optical Devices

History
Original Manuscript: January 19, 2012
Revised Manuscript: April 6, 2012
Manuscript Accepted: April 17, 2012
Published: June 27, 2012

Citation
Oleg V. Palashov, Dmitry S. Zheleznov, Alexander V. Voitovich, Victor V. Zelenogorsky, Eugene E. Kamenetsky, Efim A. Khazanov, Rodica M. Martin, Katherine L. Dooley, Luke Williams, Antonio Lucianetti, Volker Quetschke, Guido Mueller, David H. Reitze, David B. Tanner, Eric Genin, Benjamin Canuel, and Julien Marque, "High-vacuum-compatible high-power Faraday isolators for gravitational-wave interferometers," J. Opt. Soc. Am. B 29, 1784-1792 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1784


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. LIGO Science Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys.72, 076901 (2009). [CrossRef]
  2. Virgo Collaboration, “Status of the Virgo project,” Class. Quantum Grav.28, 144002 (2011). [CrossRef]
  3. H. Grote (for the LIGO Scientific Collaboration), “The GEO 600 status,” Class. Quantum Grav.27, 084003 (2010). [CrossRef]
  4. TAMA Collaboration, “Current status of TAMA,” Class. Quantum Grav.19, 1409–1419 (2002). [CrossRef]
  5. G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010). [CrossRef]
  6. LCGT Collaboration, “Status of LCGT,” Class. Quantum Grav.27, 084004 (2010). [CrossRef]
  7. D. H. Reitze, “Faraday isolator specifications for advanced LIGO,” LIGO-T050226-00-D (2006).
  8. E. A. Khazanov, N. F. Andreev, A. A. Babin, A. Kiselev, O. V. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000). [CrossRef]
  9. G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002). [CrossRef]
  10. E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004). [CrossRef]
  11. D. Coyne, LIGO vacuum compatible materials list, LIGO-E960050-B-E (Laser Interferometer Gravitational Wave Observatory, 2004).
  12. D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007). [CrossRef]
  13. L. Williams and V. Quetschke, aLIGO Faraday rotator magnet assembly hazard analysis, E070201-00-D LIGO-E1000110-v1 (2010).
  14. Bao-Min Ma and K. S. V. L. Narasimhan, “Temperature dependence of magnetic properties of Nd-Fe-B magnets,” J. Magn. Magn. Mater. 54–57, 559–562 (1986). [CrossRef]
  15. N. P. Barnes and L. P. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992). [CrossRef]
  16. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999). [CrossRef]
  17. E. A. Khazanov, N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002). [CrossRef]
  18. I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496–5500 (2009). [CrossRef]
  19. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13, 5983–5987 (2005). [CrossRef]
  20. M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998). [CrossRef]
  21. G. Mueller, S. Stepuk, and V. Quetschke, Analysis of stray magnetic fields from the Advanced LIGO Faraday Isolator, LIGO-T060025-00-D (2006).
  22. LIGO Collaboration, “Seismic isolation requirements for advanced LIGO,” Class. Quantum Grav.19, 1591–1597 (2002). [CrossRef]
  23. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999). [CrossRef]
  24. M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).
  25. Virgo Collaboration, “In-vacuum Faraday isolation remote tuning,” Appl. Opt.49, 4780–4790 (2010). [CrossRef]
  26. Virgo Collaboration, “In-vacuum optical isolation changes by heating in a Faraday isolator,” Appl. Opt.47, 5853–5861 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited