OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1793–1798

Resonant third order nonlinear optical susceptibility of gold nanoparticles

João B. Monteiro-Filho and Luis A. Gómez-Malagón  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1793-1798 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001793


View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear third order optical susceptibilities of metal/dielectric composites containing gold nanoparticles were investigated numerically around the plasmon resonance using the degenerate electron gas model. Influence of the nanoparticle size and intensity of the incident light in the real and imaginary part of the susceptibility, local field factor, absorption spectra, and dispersion curves was analyzed. Results are in agreement with the available data in the literature.

© 2012 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 22, 2012
Revised Manuscript: May 9, 2012
Manuscript Accepted: May 28, 2012
Published: June 27, 2012

Citation
João B. Monteiro-Filho and Luis A. Gómez-Malagón, "Resonant third order nonlinear optical susceptibility of gold nanoparticles," J. Opt. Soc. Am. B 29, 1793-1798 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1793


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986). [CrossRef]
  2. D. Rativa, R. E. de Araujo, and A. S. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008). [CrossRef]
  3. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002). [CrossRef]
  4. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716–718 (2003). [CrossRef]
  5. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000). [CrossRef]
  6. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  7. L. A. Gómez, C. B. de Araújo, A. M. B. Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008). [CrossRef]
  8. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999). [CrossRef]
  9. D. D. Smith, George Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997). [CrossRef]
  10. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005). [CrossRef]
  11. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004). [CrossRef]
  12. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992). [CrossRef]
  13. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993). [CrossRef]
  14. S. G. Rautian, “Nonlinear saturation spectroscopy of the degenerate electron gas in spherical metallic particles,” JETP 85, 451 (1997). [CrossRef]
  15. V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535–1539 (2004). [CrossRef]
  16. A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles,” Phys. Rev. B 84, 155461 (2011). [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  19. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef]
  20. L. Gao and Z. Li, “Third-order nonlinear optical response of metal dielectric composites,” J. Appl. Phys. 87, 1620–1625 (2000). [CrossRef]
  21. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007). [CrossRef]
  22. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, “Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales,” Opt. Lett. 23, 388–390 (1998). [CrossRef]
  23. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third- order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21, 640–644 (2004). [CrossRef]
  24. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347–357 (1988). [CrossRef]
  25. H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006). [CrossRef]
  26. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006). [CrossRef]
  27. K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995). [CrossRef]
  28. K. Puech and W. J. Blau, “Ultrafast relaxation dynamics of the optical nonlineariy in nanometric gold particles,” J. Nanopart. Res. 3, 13–21 (2001). [CrossRef]
  29. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nature Phys. 2, 44–47 (2006). [CrossRef]
  30. Y. Takeda, O. A. Plaksin, and N. Kishimoto, “Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass,” Opt. Express 15, 6010–6018 (2007). [CrossRef]
  31. R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited