OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1810–1814

Efficient and flexible generation of entangled qudits with cross-phase modulation

Xin Lu Ye and Qing Lin  »View Author Affiliations

JOSA B, Vol. 29, Issue 7, pp. 1810-1814 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we provide a simple but powerful module to generate entangled qudits. This module, assisted with cross-Kerr nonlinearity, is flexible for generation of entangled qudits with arbitrary dimensions. Since the generation is still probabilistic, we modify the simple module in order to increase efficiency and save resources. With the modified module, the input independent qudits could be transformed into different entangled forms, which include the possible maximal entangled form and the less entangled forms. The corresponding total success probability could reach 1.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: February 9, 2012
Revised Manuscript: April 23, 2012
Manuscript Accepted: May 23, 2012
Published: June 27, 2012

Xin Lu Ye and Qing Lin, "Efficient and flexible generation of entangled qudits with cross-phase modulation," J. Opt. Soc. Am. B 29, 1810-1814 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  3. R. W. Spekkens and T. Rudolph, “Degrees of concealment and bindingness in quantum bit commitment protocols,” Phys. Rev. A 65, 012310 (2001). [CrossRef]
  4. D. Bruß and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002). [CrossRef]
  5. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002). [CrossRef]
  6. T. Durt, N. J. Cerf, N. Gisin, and M. Żukowski, “Security of quantum key distribution with entangled qutrits,” Phys. Rev. A 67, 012311 (2003). [CrossRef]
  7. G. M. Terriza, A. Vaziri, J. Řeháček, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92, 167903 (2004). [CrossRef]
  8. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004). [CrossRef]
  9. S. Gröblacher, Y. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006). [CrossRef]
  10. I. Bregman, D. Aharonov, M. Ben-Or, and H. S. Eisenberg, “Simple and secure quantum key distribution with biphotons,” Phys. Rev. A 77, 050301 (2008). [CrossRef]
  11. T. C. Ralph, K. J. Resch, and A. Gilchrist, “Efficient Toffoli gates using qudits,” Phys. Rev. A 75, 022313 (2007). [CrossRef]
  12. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2008). [CrossRef]
  13. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef]
  14. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002). [CrossRef]
  15. L. Neves, S. Pádua, and C. Saavedra, “Controlled generation of maximally entangled qudits using twin photons,” Phys. Rev. A 69, 042305 (2004). [CrossRef]
  16. L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005). [CrossRef]
  17. M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits,” Phys. Rev. Lett. 94, 220501 (2005). [CrossRef]
  18. R. T. Thew, A. Acín, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004). [CrossRef]
  19. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304(R) (2004). [CrossRef]
  20. J. C. Howell, A. Lamas-Linares, and D. Bouwmeester, “Experimental violation of a spin-1 bell inequality using maximally entangled four-photon states,” Phys. Rev. Lett. 88, 030401 (2002). [CrossRef]
  21. Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004). [CrossRef]
  22. Y. I. Bogdanov, M. V. Chekhova, L. A. Krivitsky, S. P. Kulik, A. N. Penin, A. A. Zhukov, L. C. Kwek, C. H. Oh, and M. K. Tey, “Statistical reconstruction of qutrits,” Phys. Rev. A 70, 042303 (2004). [CrossRef]
  23. Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, C. H. Oh, and M. K. Tey, “Preparation of arbitrary qutrit state based on biphotons,” Proc. SPIE 5833, 202–212 (2005). [CrossRef]
  24. E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik, “Realization of four-level qudits using biphotons,” Phys. Rev. Lett. 97, 023602 (2006). [CrossRef]
  25. H. Mikami and T. Kobayashi, “Remote preparation of qutrit states with biphotons,” Phys. Rev. A 75, 022325 (2007). [CrossRef]
  26. G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Experimental realization of polarization qutrits from nonmaximally entangled states,” Phys. Rev. A 76, 012319 (2007). [CrossRef]
  27. Y. M. Li, K. S. Zhang, and K. C. Peng, “Generation of qudits and entangled qudits,” Phys. Rev. A 77, 015802 (2008). [CrossRef]
  28. B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100, 060504 (2008). [CrossRef]
  29. J. Joo, T. Rudolph, and B. C. Sanders, “A heralded two-qutrit entangled state,” J. Phys. B At. Mol. Opt. Phys. 42, 114007 (2009). [CrossRef]
  30. A. Halevy, E. Megidish, T. Shacham, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011). [CrossRef]
  31. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  32. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R)(2005). [CrossRef]
  33. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  34. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005). [CrossRef]
  35. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]
  36. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009). [CrossRef]
  37. Q. Lin, B. He, J. A. Bergou, and Y. H. Ren, “Processing multiphoton states through operation on a single photon: methods and applications,” Phys. Rev. A 80, 042311 (2009). [CrossRef]
  38. B. He, Y.-H. Ren, and J. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009). [CrossRef]
  39. B. He, Y.-H. Ren, and J. A. Bergou, “Universal entangler with photon pairs in arbitrary states,” J. Phys. B At. Mol. Opt. Phys. 43, 025502 (2010). [CrossRef]
  40. Q. Lin and B. He, “Bi-directional mapping between polarization and spatially encoded photonic qutrits,” Phys. Rev. A 80, 062312 (2009). [CrossRef]
  41. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  42. B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited