OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1815–1821

Theory of magneto-optical effects in nanostructured ferromagnetics

Igor Pimenov and Vladislav Kurin  »View Author Affiliations

JOSA B, Vol. 29, Issue 7, pp. 1815-1821 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theory of light interaction with a magnetic nanostructured material consisting of a periodic array of ferromagnetic nanocylinders magnetized along the symmetry axis. Using a multiple scattering approach, we calculated the amplitudes of diffracted waves in terms of multipole expansion coefficients and used the developed formalism to describe the experimentally observed enhancement of the magneto-optical effects in magnetic nanostructures. The analysis provides a physical interpretation of the enhancement in terms of interference between the resonant and nonresonant scattering processes. The resonant scattering is caused by excitation of dipole surface-plasmon eigenmodes; the nonresonant one is associated with the monopole modes.

© 2012 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(230.3810) Optical devices : Magneto-optic systems
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

Original Manuscript: April 17, 2012
Revised Manuscript: May 29, 2012
Manuscript Accepted: May 29, 2012
Published: June 27, 2012

Igor Pimenov and Vladislav Kurin, "Theory of magneto-optical effects in nanostructured ferromagnetics," J. Opt. Soc. Am. B 29, 1815-1821 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett 93, 181108 (2008). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007). [CrossRef]
  4. K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60(11), 40–46 (2007). [CrossRef]
  5. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Second harmonic generation from arrays of subwavelength cylinders,” Phys. Rev. B 76, 085311 (2007). [CrossRef]
  6. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011). [CrossRef]
  7. M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001). [CrossRef]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  10. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402(1902).
  11. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010). [CrossRef]
  12. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009). [CrossRef]
  13. V. I. Belotelov, L. L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007). [CrossRef]
  14. M. H. Cho, Y. Lu, J. Y. Rhee, and Y. P. Lee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 16825–16839 (2008). [CrossRef]
  15. H. Xu and B. S. Ham, “Investigation of extraordinary optical transmission and Faraday effect in one-dimensional metallic-magnetic gratings,” Opt. Express 16, 21375–21382 (2008). [CrossRef]
  16. V. Twersky, “On a multiple scattering theory of the finite grating and the wood anomalies,” J. Appl. Phys. 23, 1099–1118(1952). [CrossRef]
  17. X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electro-magnetic waves,” Phys. Rev. B 47, 4161–4167 (1993). [CrossRef]
  18. A. A. Zharov and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007). [CrossRef]
  19. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef]
  20. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Mir, 1981).
  21. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products (Nauka, 1971).
  22. V. Twersky, “Elementary function representations of Schlömilch series,” Arch. Ration. Mech. Anal. 8, 323–332 (1961). [CrossRef]
  23. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited