OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1822–1828

Transfer of spin squeezing and particle entanglement between atoms and photons in coupled cavities via two-photon exchange

Ali Ü. C. Hardal and Özgür E. Müstecaplıoğlu  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1822-1828 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001822


View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine transfer of particle entanglement and spin squeezing between atomic and photonic subsystems in optical cavities coupled by two-photon exchange. Each cavity contains a single atom, interacting with cavity photons with a two-photon cascade transition. Particle entanglement is characterized by evaluating optimal spin squeezing inequalities for the cases of initially separable and entangled two-photon states. It is found that particle entanglement is first generated among the photons in separate cavities and then transferred to the atoms. The underlying mechanism is recognized as an intercavity two-axis twisting spin squeezing interaction, induced by two-photon exchange, and its optimal combination with the intracavity atom–photon coupling. Relative effect of nonlocal two-photon exchange and local atom–photon interactions of cavity photons on the spin squeezing and entanglement transfer is pointed out.

© 2012 Optical Society of America

OCIS Codes
(270.4180) Quantum optics : Multiphoton processes
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: March 15, 2012
Revised Manuscript: May 19, 2012
Manuscript Accepted: May 20, 2012
Published: June 27, 2012

Citation
Ali Ü. C. Hardal and Özgür E. Müstecaplıoğlu, "Transfer of spin squeezing and particle entanglement between atoms and photons in coupled cavities via two-photon exchange," J. Opt. Soc. Am. B 29, 1822-1828 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Alexanian, “Two-photon exchange between two three-level atoms in separate cavities,” Phys. Rev. A 83, 023814 (2011). [CrossRef]
  2. S. Longhi, “Optical realization of two-boson tunneling dynamics,” Phys. Rev. A 83, 43835 (2011). [CrossRef]
  3. X.-F. Zhou, Y.-S. Zhang, and G.-C. Guo, “Pair tunneling of bosonic atoms in an optical lattice,” Phys. Rev. A 80, 013605 (2009). [CrossRef]
  4. M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138–5143 (1993). [CrossRef]
  5. A. Sørensen, L. M. Duan, J. I. Cirac, and P. Zoller, “Many-particle entanglement with Bose–Einstein condensates,” Nature 409, 63–66 (2001). [CrossRef]
  6. M. Hillery, “An introduction to the quantum theory of nonlinear optics,” Acta Phys. Slovaca 59, 1–80 (2009). [CrossRef]
  7. F. DellaAnno, S. De Siena, and F. Illuminati, “Multiphoton quantum optics and quantum state engineering,” Phys. Rep. 428, 53–168 (2006). [CrossRef]
  8. A. Biswas and G. S. Agarwal, “Transfer of an unknown quantum state, quantum networks, and memory,” Phys. Rev. A 70, 022323 (2004). [CrossRef]
  9. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997). [CrossRef]
  10. L. Vernac, M. Pinard, and E. Giacobino, “Quantum state transfer from light beams to atomic ensembles,” Eur. Phys. J. D 17, 125–136 (2001). [CrossRef]
  11. J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83, 1319–1322 (1999). [CrossRef]
  12. A. Kuzmich, K. Mølmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997). [CrossRef]
  13. A. Banerjee, “Generation of atomic-squeezed states in an optical cavity with an injected squeezed vacuum,” Phys. Rev. A 54, 5327–5333 (1996). [CrossRef]
  14. G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, “Optimal spin squeezing inequalities detect bound entanglement in spin models,” Phys. Rev. Lett. 99, 250405 (2007). [CrossRef]
  15. J. Ma, X. Wang, C. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165(2011). [CrossRef]
  16. M. Cunha, J. Dunningham, and V. Vedral, “Entanglement in single-particle systems,” Proc. R. Soc. A 463, 2277–2286(2007). [CrossRef]
  17. S. Van Enk, “Single-particle entanglement,” Phys. Rev. A 72, 64306 (2005). [CrossRef]
  18. F. Benatti, R. Floreanini, and U. Marzolino, “Entanglement and squeezing with identical particles: ultracold atom quantum metrology,” J. Phys. B 44, 091001 (2011). [CrossRef]
  19. B. Öztop, M. Ö. Oktel, Ö. E. Müstecaplıoğlu, and L. You, “Quantum entanglement of spin-1 bosons with coupled ground states in optical lattices,” J. Phys. B 42, 145505 (2009). [CrossRef]
  20. G. Tóth, C. Knapp, O. Gühne, and H. Briegel, “Spin squeezing and entanglement,” Phys. Rev. A 79, 042334 (2009). [CrossRef]
  21. J. Vidal, “Concurrence in collective models,” Phys. Rev. A 73, 062318 (2006). [CrossRef]
  22. G. Vitagliano, P. Hyllus, I. L. Egusquiza, and G. Tóth, “Spin squeezing inequalities for arbitrary spin,” Phys. Rev. Lett. 107, 240502 (2011). [CrossRef]
  23. Y. Wu and X. Yang, “Effective two-level model for a three-level atom in the Ξ configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
  24. Y. Wu, “Effective Raman theory for a three-level atom in the λ configuration,” Phys. Rev. A 54, 1586 (1996). [CrossRef]
  25. M. Alexanian and S. K. Bose, “Unitary transformation and the dynamics of a three-level atom interacting with two quantized field modes,” Phys. Rev. A 52, 2218–2224 (1995). [CrossRef]
  26. M. Alexanian, S. Bose, and L. Chow, “Trapping and Fock state generation in a two-photon micromaser,” J. Mod. Opt. 45, 2519–2532 (1998). [CrossRef]
  27. J. Vidal, G. Palacios, and C. Aslangul, “Entanglement dynamics in the Lipkin–Meshkov–Glick model,” Phys. Rev. A 70, 062304 (2004). [CrossRef]
  28. P. Ribeiro, J. Vidal, and R. Mosseri, “Exact spectrum of the Lipkin–Meshkov–Glick model in the thermodynamic limit and finite-size corrections,” Phys. Rev. E 78, 021106 (2008). [CrossRef]
  29. P. Ribeiro, J. Vidal, and R. Mosseri, “Thermodynamical limit of the Lipkin–Meshkov–Glick model,” Phys. Rev. Lett. 99, 050402 (2007). [CrossRef]
  30. V. Karassiov and A. Klimov, “An algebraic approach to solving evolution problems in some nonlinear quantum models,” Phys. Lett. A 189, 43–51 (1994). [CrossRef]
  31. P. Higgs, “Dynamical symmetries in a spherical geometry. I,” J. Phys. A Math. Gen. 12, 309–323 (1979). [CrossRef]
  32. H. J. Carmichael, “Quantum fluctuations in absorptive bistability without adiabatic elimination,” Phys. Rev. A 33, 3262–3269 (1986). [CrossRef]
  33. M. Alexanian, “Scattering of two coherent photons inside a one-dimensional coupled-resonator waveguide,” Phys. Rev. A 81, 015805 (2010). [CrossRef]
  34. J. Schreier, A. Houck, J. Koch, D. Schuster, B. Johnson, J. Chow, J. Gambetta, J. Majer, L. Frunzio, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Suppressing charge noise decoherence in superconducting charge qubits,” Phys. Rev. B 77, 180502 (2008). [CrossRef]
  35. C. Yang, “Fast quantum information transfer with superconducting flux qubits coupled to a cavity,” J. Phys. A Math. Theor. 45, 205304 (2012). [CrossRef]
  36. D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer, “Reversible state transfer between superconducting qubits and atomic ensembles,” Phys. Rev. A 79, 040304 (2009). [CrossRef]
  37. P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E. Solano, C. J. P. M. Harmans, and J. E. Mooij, “Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime,” Phys. Rev. Lett. 105, 237001 (2010). [CrossRef]
  38. J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes–Cummings model,” Phys. Rev. Lett. 105, 263603 (2010). [CrossRef]
  39. M. Hofheinz, E. Weig, M. Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O’Connell, H. Wang, J. Martinis, and A. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008). [CrossRef]
  40. D. Bozyigit, C. Lang, L. Steffen, J. Fink, C. Eichler, M. Baur, R. Bianchetti, P. Leek, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors,” Nat. Phys. 7, 154–158 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited