OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1844–1853

Nonclassical properties of photon-added two-mode squeezed thermal states and their decoherence in the thermal channel

Xiang-guo Meng, Zhen Wang, Hong-yi Fan, Ji-suo Wang, and Zhen-shan Yang  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1844-1853 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001844


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate nonclassicality and decoherence of field states generated with the non-Gaussian operation of photon addition to a two-mode squeezed thermal state (TSTS) using the normally ordered density operator of the photon-added TSTS (PTSTS). The normalization factor of the PTSTS is just a Jacobi polynomial of the squeezing parameter γ and the average photon number n¯ of the thermal field. We show that the fields in such states exhibit remarkable quantum features, such as sub-Poissonian photon statistics, the anti-bunching effect, and photon-number distribution. The nonclassicality is discussed in phase space based on the partial negativity of the Wigner function (WF) with two-variable Hermite polynomials. The results show that the non-Gaussian WF always exhibits the quantum interference structure caused by the two-mode squeezing operation and has some negative regions for any value of n¯, γ, and the photon-addition numbers m, n. In addition, the effect of decoherence on the PTSTS in the thermal channel is studied by analytically deriving the time-evolution WF. We find that the WF becomes Gaussian (corresponding to a classical thermal state) at long times, losing its nonclassicality as a result of decoherence, and a larger m (or n) leads to a longer decoherence time κt.

© 2012 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Quantum Optics

History
Original Manuscript: April 2, 2012
Revised Manuscript: May 8, 2012
Manuscript Accepted: May 17, 2012
Published: June 29, 2012

Citation
Xiang-guo Meng, Zhen Wang, Hong-yi Fan, Ji-suo Wang, and Zhen-shan Yang, "Nonclassical properties of photon-added two-mode squeezed thermal states and their decoherence in the thermal channel," J. Opt. Soc. Am. B 29, 1844-1853 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1844


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998). [CrossRef]
  2. N. J. Cerf, O. Krüger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005). [CrossRef]
  3. P. van Loock, W. J. Munro, K. Nemoto, T. P. Spiller, T. D. Ladd, S. L. Braunstein, and G. J. Milburn, “Hybrid quantum computation in quantum optics,” Phys. Rev. A 78, 022303 (2008). [CrossRef]
  4. T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003). [CrossRef]
  5. J. Niset, J. Fiurášek, and N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009). [CrossRef]
  6. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002). [CrossRef]
  7. G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002). [CrossRef]
  8. A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-tolerant linear optical quantum computing with small-amplitude coherent states,” Phys. Rev. Lett. 100, 030503 (2008). [CrossRef]
  9. M. G. Genoni and M. G. A. Paris, “Quantifying non-Gaussianity for quantum information,” Phys. Rev. A 82, 052341 (2010). [CrossRef]
  10. V. V. Dodonov, M. A. Marchiolli, Y. A. Korennoy, V. I. Man’ko, and Y. A. Moukhin, “Dynamical squeezing of photon-added coherent states,” Phys. Rev. A 58, 4087–4094 (1998). [CrossRef]
  11. S. Sivakumar, “Studies on nonlinear coherent states,” J. Opt. B Quant. Semiclass. Opt. 2, R61–R75 (2000). [CrossRef]
  12. S.-Y. Lee, J. Y. Park, S.-W. Ji, C. H. R. Ooi, and H.-W. Lee, “Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations,” J. Opt. Soc. Am. B 26, 1532–1537 (2009). [CrossRef]
  13. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006). [CrossRef]
  14. A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007). [CrossRef]
  15. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007). [CrossRef]
  16. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and Ph. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006). [CrossRef]
  17. L. Y. Hu and Z. M. Zhang, “Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment,” J. Opt. Soc. Am. B 29, 529–537 (2012). [CrossRef]
  18. S.-Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010). [CrossRef]
  19. S.-Y. Lee, S.-W. Ji, H.-J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011). [CrossRef]
  20. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004). [CrossRef]
  21. H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004). [CrossRef]
  22. H. Takahashi, J. S. Neergaard-Nielsenl, M. Takeuchil, M. Takeokal, K. Hayasakal, A. Furusawa, and M. Sasakil, “Entanglement distillation from Gaussian input states,” Nat. Photon. 4, 178–181 (2010). [CrossRef]
  23. G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991). [CrossRef]
  24. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310 (2006). [CrossRef]
  25. M. S. Kim, “Recent developments in photon-level operations on travelling light fields,” J. Phys. B At. Mol. Opt. Phys. 41, 133001 (2008). [CrossRef]
  26. M. Dakna, T. Anhut, T. Opatrný, L. Knöll, and D.-G. Welsch, “Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997). [CrossRef]
  27. M. Ban, “Photon statistics of conditional output states of lossless beam splitter,” J. Mod. Opt. 43, 1281–1303 (1996). [CrossRef]
  28. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004). [CrossRef]
  29. A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820 (2005). [CrossRef]
  30. A. Zavatta, V. Parigi, and M. Bellini, “Experimental nonclassicality of single-photon-added thermal light states,” Phys. Rev. A 75, 052106 (2007). [CrossRef]
  31. C. T. Lee, “Theorem on nonclassical states,” Phys. Rev. A 52, 3374–3376 (1995). [CrossRef]
  32. M. Barbieri, N. Spagnolo, M. G. Genoni, F. Ferreyrol, R. Blandino, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Non-Gaussianity of quantum states: an experimental test on single-photon added coherent states,” Phys. Rev. A 82, 063833 (2010). [CrossRef]
  33. T. Kiesel, W. Vogel, M. Bellini, and A. Zavatta, “Nonclassicality quasiprobability of single-photon-added thermal states,” Phys. Rev. A 83, 032116 (2011). [CrossRef]
  34. M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005). [CrossRef]
  35. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004). [CrossRef]
  36. S. Sivakumar, “Photon-added coherent states in parametric down-conversion,” Phys. Rev. A 83, 035802 (2011). [CrossRef]
  37. V. Parigi, A. Zavatta, and M. Bellini, “Manipulating thermal light states by the controlled addition and subtraction of single photons,” Laser Phys. Lett. 5, 246–251 (2008). [CrossRef]
  38. Ya. A. Korennoy and V. I. Man’ko, “Optical tomography of photon-added coherent states, even and odd coherent states, and thermal states,” Phys. Rev. A 83, 053817 (2011). [CrossRef]
  39. H.-R. Li, F.-L. Li, and S.-Y. Zhu, “Inseparability of photon-added Gaussian states,” Phys. Rev. A 75, 062318 (2007). [CrossRef]
  40. X.-B. Wang, L. C. Kwek, Y. Liu, and C. H. Oh, “Non-classical effects of two-mode photon-added displaced squeezed states,” J. Phys. B At. Mol. Opt. Phys. 34, 1059–1078 (2001). [CrossRef]
  41. P. Marian, T. A. Marian, and H. Scutaru, “Bures distance as a measure of entanglement for two-mode squeezed thermal states,” Phys. Rev. A 68, 062309 (2003). [CrossRef]
  42. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2004).
  43. V. V. Dodonov, “‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years,” J. Opt. B Quant. Semiclass. Opt. 4, R1–R33 (2002). [CrossRef]
  44. V. V. Dodonov and L. A. de Souza, “Decoherence of superpositions of displaced number states,” J. Opt. B Quant. Semiclass. Opt. 7, S490–S499 (2005). [CrossRef]
  45. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963). [CrossRef]
  46. J. R. Klauder and B.-S. Skagerstam, Coherent States (World Scientific, 1985).
  47. H. Y. Fan, H. L. Lu, and Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006). [CrossRef]
  48. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).
  49. H. Weyl, “Quantenmechanik und Gruppentheorie,” Z. Phys. 46, 1–46 (1927). [CrossRef]
  50. X. G. Meng, J. S. Wang, and B. L. Liang, “Two-mode excited squeezed vacuum state and its properties,” Commun. Theor. Phys. 49, 1299–1304 (2008). [CrossRef]
  51. L. Mandel, “Squeezed states and sub-Poissonian photon statistics,” Phys. Rev. Lett. 49, 136–138 (1982). [CrossRef]
  52. G. S. Agarwal and K. Tara, “Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics,” Phys. Rev. A 46, 485–488 (1992). [CrossRef]
  53. C. T. Lee, “Many-photon antibunching in generalized pair coherent states,” Phys. Rev. A 41, 1569–1575 (1990). [CrossRef]
  54. W. Schleich, D. F. Walls, and J. A. Wheeler, “Area of overlap and interference in phase space versus Wigner pseudoprobabilities,” Phys. Rev. A 38, 1177–1186 (1988). [CrossRef]
  55. W. Schleich and J. A. Wheeler, “Oscillations in photon distribution of squeezed states and interference in phase space,” Nature 326, 574–577 (1987). [CrossRef]
  56. W. Schleich and J. A. Wheeler, “Oscillations in photon distribution of squeezed states,” J. Opt. Soc. Am. B 4, 1715–1722 (1987). [CrossRef]
  57. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, 1996).
  58. H. Y. Fan and H. R. Zaidi, “Application of IWOP technique to the generalized Weyl correspondence,” Phys. Lett. A 124, 303–307 (1987). [CrossRef]
  59. C. W. Gardner and P. Zoller, Quantum Noise (Springer, 2000).
  60. Y. Takahashi and H. Umezawa, “Collective phenomena,” Int. J. Mod. Phys. 2, 55–80 (1975).
  61. H. Y. Fan and L. Y. Hu, “New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation,” Opt. Commun. 281, 5571–5573 (2008). [CrossRef]
  62. M. G. Genoni, M. G. A. Paris, and K. Banaszek, “Quantifying the non-Gaussian character of a quantum state by quantum relative entropy,” Phys. Rev. A 78, 060303 (2008). [CrossRef]
  63. M. G. Genoni, M. G. A. Paris, and K. Banaszek, “Measure of the non-Gaussian character of a quantum state,” Phys. Rev. A 76, 042327 (2007). [CrossRef]
  64. X. G. Wang, C.-S. Yu, and X. X. Yi, “An alternative quantum fidelity for mixed states of qudits,” Phys. Lett. A 373, 58–60 (2008). [CrossRef]
  65. Y. Yang and F.-L. Li, “Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement,” Phys. Rev. A 80, 022315 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited