OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1854–1862

Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters

D. Serrano, A. Braud, J. L. Doualan, P. Camy, and R. Moncorgé  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 1854-1862 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001854


View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The codoping of CaF2:Pr3+ with Yb3+ or Lu3+ ions is shown to avoid the clustering of Pr3+ ions, which otherwise prevent Pr3+ doped CaF2 to be used for various photonic applications. The breaking of Pr3+ clusters by Lu3+ ions paves the way towards the development of a Pr3+ doped CaF2 visible laser. On the other hand, the formation of Pr3+-Yb3+ clusters in place of Pr3+ clusters leads to extremely efficient energy transfers between Pr3+ and Yb3+ which could be used for quantum cutting applications. Two types of clusters are observed for both types of codopings. Pr3+ to Yb3+ energy transfer analysis shows that for one of the clusters an ultrafast energy transfer takes place with a rate of 5×107s1, which is likely due to exchange interaction.

© 2012 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(260.2160) Physical optics : Energy transfer
(260.3800) Physical optics : Luminescence

ToC Category:
Physical Optics

History
Original Manuscript: April 25, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: May 25, 2012
Published: July 3, 2012

Citation
D. Serrano, A. Braud, J. L. Doualan, P. Camy, and R. Moncorgé, "Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters," J. Opt. Soc. Am. B 29, 1854-1862 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-1854


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 CW lasers: efficient laser operation at 522.6 nm; 545.9 nm; 607.2 nm and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011). [CrossRef]
  2. B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011). [CrossRef]
  3. P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007). [CrossRef]
  4. T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002). [CrossRef]
  5. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077(2009). [CrossRef]
  6. D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011). [CrossRef]
  7. L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for solar cells in YF3:Pr3+, Yb3+,” Spectrosc.Lett. 43, 373–381 (2010). [CrossRef]
  8. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010). [CrossRef]
  9. D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011). [CrossRef]
  10. B. Bleaney, P. M. Llewellyn, and D. A. Jones, “Paramagnetic resonance of uranium ions,” Proc. Phys. Soc. London B 69, 858–860 (1956). [CrossRef]
  11. J. L. Merz and P. S. Pershan, “Charge conversion of irradiated rare-earth ions in calcium fluoride. I,” Phys. Rev. 162, 217–235 (1967). [CrossRef]
  12. C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981). [CrossRef]
  13. P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51, 159–169 (1984). [CrossRef]
  14. S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991). [CrossRef]
  15. E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33, 1275–1276 (1960). [CrossRef]
  16. J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Deffect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425–6438 (1982). [CrossRef]
  17. J. Sierro, “ESR detection of the hydrolysis of solid CaF2,” J. Chem. Phys. 34, 2183–2184 (1961). [CrossRef]
  18. D. R. Tallant, D. S. Moore, and J. C. Wright, “Defect equilibria in fluorite structure crystals,” J. Chem. Phys. 67, 2897–2907 (1977). [CrossRef]
  19. M. B. Seelbinder and J. C. Wright, “Identification of higher order clusters in charge compensated materials using three-body energy transfer,” J. Chem. Phys. 75, 5070–5079 (1981). [CrossRef]
  20. S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005). [CrossRef]
  21. V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008). [CrossRef]
  22. V. A. Chernyshev, A. E. Nikiforov, V. P. Volodin, and G. S. Slepukhin, “Electronic structure of Yb3+ impurity centers in fluorites,” Phys. Solid State 52, 1874–1879 (2010). [CrossRef]
  23. M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009). [CrossRef]
  24. S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011). [CrossRef]
  25. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004). [CrossRef]
  26. C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002). [CrossRef]
  27. J. Kliava, P. Evesque, and J. Duran, “Laser selective excitation and energy transfer in a multisite system: CaF2:Pr3+,” J. Phys. C: Solid State Phys. 11, 3357–3368 (1978). [CrossRef]
  28. K. H. Petit, P. Evesque, and J. Duran, “Dimers and clusters in CaF2:Pr3+. Laser selective excitation and time-resolved spectroscopy,” J. Phys. C: Solid State Phys. 14, 5081–5090 (1981). [CrossRef]
  29. L. van Pieterson, R. P. A. Dullens, P. S. Peijzel, and A. Meijerink, “Site-selective laser spectroscopy of 4fn−4fn−15d transitions in CaF2:Pr3+ with F−, D−, H−, Li+, or Na+ charge compensation,” J. Chem. Phys. 115, 9393–9400 (2001). [CrossRef]
  30. J. Chrysochoos, P. W. M. Jacobs, and M. J. Stillman, “Laser induced emission spectra of Pr3+ in CaF2 at low temperatures,” J. Lum. 28, 177–190 (1983). [CrossRef]
  31. T. Boonyarith, J. P. D. Martin, B. Luo, and N. B. Manson, “Zeeman measurements of Pr3+ centres in CaO and CaF2,” J. Lumin. 51, 149–156 (1992). [CrossRef]
  32. W. A. Hargreaves, “Energy levels of tetragonally sited Pr3+ ions in calcium fluoride crystals,” Phys. Rev. B 6, 3417–3422 (1972). [CrossRef]
  33. B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+,R3+ (R3+=Y3+, Gd3+, Nd3+),” Phys. Rev. B 36, 9781–9789 (1987). [CrossRef]
  34. D. W. Pack, W. J. Manthey, and D. S. McClure, “Ce+:Na+ pairs in CaF2 and SrF2. Absorption and laser-excitation spectroscopy, and the observation of hole burning,” Phys. Rev. B 40, 9930–9944 (1989). [CrossRef]
  35. G. D. Jones and R. J. Reeves, “Na+, Li+ and cubic centres in rare-earth-doped CaF2 and SrF2,” J. Lum. 87–89, 1108–1111 (2000). [CrossRef]
  36. J. P. Laval, A. Mikou, and B. Frit, “Short-range order in heavily doped CaF2:Ln3+ fluorites a powder neutron diffraction study,” Solid State Ionics 28–30, 1300–1304 (1988). [CrossRef]
  37. T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999). [CrossRef]
  38. R. B. Barthem, R. Buisson, and J. C. Vial, “Coexistence of two excitation transfer mechanisms in LiYF4:Pr,” J. Lum. 38, 190–192 (1987). [CrossRef]
  39. J. Hormadaly and R. Reisfeld, “Intensity parameters and laser analysis of Pr3+ and Dy3+ in oxide glasses,” J. Non-Cryst. Solids 30, 337–348 (1979). [CrossRef]
  40. M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium (III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985). [CrossRef]
  41. A. I. Burshtein, “The influence of the migration mechanism of approaching particles on the energy transfer between them,” J. Lum. 21, 317–321 (1980). [CrossRef]
  42. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953). [CrossRef]
  43. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965). [CrossRef]
  44. V. S. Mironov, “Superexchange mechanism of energy transfer between neighboring lanthanide ions in dielectric crystals,” Opt. Spectrosc. 88, 372–376 (2000). [CrossRef]
  45. L. A. Diaz-Torres, O. Barbosa-Garcia, C. W. Struck, and R. A. McFarlane, “Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations,” J. Lum. 78, 69–86 (1998). [CrossRef]
  46. V. Lupei and A. Lupei, “Emission dynamics of the F43/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000). [CrossRef]
  47. W. B. Smith and R. C. Powell, “Energy transfer in CaWO4:Sm3+,” J. Chem. Phys. 76, 854–859 (1982). [CrossRef]
  48. P. W. Anderson, “New approach to the theory of superexchange interactions,” Phys. Rev. 115, 2–13 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited