OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1884–1888

Integrated entangled photons source from microcavity parametric down conversion

Wei-Jian Chen, Fang-Wen Sun, Chang-Ling Zou, and Guang-Can Guo  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 1884-1888 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mutually orthogonal polarization photons from Type-II parametric down conversion process in a circular microcavity were discussed based on the nonlinear interaction among whispering gallery modes. Furthermore, an onchip polarization entangled photons source can be obtained with integrated pump laser in the same microcavity and polarization beam splitter. Such an entangled photons resource will be useful in many areas, such as microcavity-QED and onchip quantum information techniques.

© 2012 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: March 21, 2012
Revised Manuscript: May 16, 2012
Manuscript Accepted: June 7, 2012
Published: July 3, 2012

Wei-Jian Chen, Fang-Wen Sun, Chang-Ling Zou, and Guang-Can Guo, "Integrated entangled photons source from microcavity parametric down conversion," J. Opt. Soc. Am. B 29, 1884-1888 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, 1984), pp. 175–179.
  2. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005). [CrossRef]
  3. X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011). [CrossRef]
  4. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007). [CrossRef]
  5. F. W. Sun, B. H. Liu, Y. X. Gong, Y. F. Huang, Z. Y. Ou, and G. C. Guo, “Experimental demonstration of phase measurement precision beating standard quantum limit by projection measurement,” Europhys. Lett. 82, 24001 (2008). [CrossRef]
  6. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  7. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
  8. L. M. Duan and C. Monroe, “Colloquium: quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010). [CrossRef]
  9. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef]
  10. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]
  11. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009). [CrossRef]
  12. P. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  13. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef]
  14. Z. Y. Ou, and Y. J. Lu, “Cavity enhanced spontaneous parametric down conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999). [CrossRef]
  15. X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008). [CrossRef]
  16. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011). [CrossRef]
  17. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010). [CrossRef]
  18. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000). [CrossRef]
  19. L. X. He, M. Gong, C. F. Li, G. C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 μm photon emitter,” Phys. Rev. Lett. 101, 157405 (2008). [CrossRef]
  20. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010). [CrossRef]
  21. A. J. Bennett, M. A. Pooley, R. M. Stevenson, M. B. Ward, R. B. Patel, A. Boyer de la Giroday, N. Sköld, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Electric-field-induced coherent coupling of the exciton states in a single quantum dot,” Nat. Phys. 6, 947–950 (2010). [CrossRef]
  22. Z.-Y. J. Ou, Multi-Photon Quantum Interference (Springer, 2007).
  23. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991). [CrossRef]
  24. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010). [CrossRef]
  25. G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77, 043817 (2008). [CrossRef]
  26. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  27. S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6, 145–177 (2012). [CrossRef]
  28. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011). [CrossRef]
  29. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  30. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74, 051802 (2006). [CrossRef]
  31. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited