OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1942–1946

Suppression of high-radial-order whispering-gallery modes and directional emission of anisotropic cylindrical microcavity

Xue-liang Kang, Xiao-bo Zhang, Yong-ping Li, and Ji-fang Liu  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 1942-1946 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001942


View Full Text Article

Enhanced HTML    Acrobat PDF (482 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Suppression of high-radial-order whispering-gallery modes in a cylindrical microcavity made of electric anisotropic medium was studied by the finite-difference time-domain method. While the electric anisotropy of the microcavity medium increases, the quality factors of high-radial-order whispering-gallery modes decrease more quickly to zero than those of first-radial-order whispering-gallery modes. Thus, for an anisotropic cylindrical microcavity with large enough anisotropy, the spectrum consists of only those resonant peaks corresponding to first-radial-order whispering-gallery modes. This novel characteristic results in widening of the free spectral range of the cylindrical microcavity. Therefore, the anisotropic cylindrical microcavity has potential applications in single-mode low-threshold microlasers and narrow-linewidth wavelength-selective filters.

© 2012 Optical Society of America

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(230.3990) Optical devices : Micro-optical devices
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 20, 2012
Revised Manuscript: June 4, 2012
Manuscript Accepted: June 15, 2012
Published: July 13, 2012

Citation
Xue-liang Kang, Xiao-bo Zhang, Yong-ping Li, and Ji-fang Liu, "Suppression of high-radial-order whispering-gallery modes and directional emission of anisotropic cylindrical microcavity," J. Opt. Soc. Am. B 29, 1942-1946 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-1942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  2. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993). [CrossRef]
  3. M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994). [CrossRef]
  4. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  5. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006). [CrossRef]
  6. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742–5747 (2001). [CrossRef]
  7. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef]
  8. J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron 12, 143–147 (2006). [CrossRef]
  9. M. L. M. Balistreri, D. J. W. Klunder, F. C. Blom, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Visualizing the whispering-gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24, 1829–1831 (1999). [CrossRef]
  10. D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007). [CrossRef]
  11. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004). [CrossRef]
  12. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef]
  13. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000). [CrossRef]
  14. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006). [CrossRef]
  15. X.-L. Kang, Y.-P. Li, S.-L. Qiu, and J.-X. Cai, “Spectrum control by anisotropy in a cylindrical microcavity,” Opt. Express 17, 23843–23850 (2009). [CrossRef]
  16. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483–1485 (1995). [CrossRef]
  17. A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).
  18. A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007). [CrossRef]
  19. E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011). [CrossRef]
  20. S. Dey and R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999). [CrossRef]
  21. A. Mohammadi, H. Nadgaran, and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-difference time-domain method,” Opt. Express 13, 10367–10381 (2005). [CrossRef]
  22. A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988). [CrossRef]
  23. J. Schneider and S. Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antennas Propag. 41, 994–999 (1993). [CrossRef]
  24. J. Fang and Z. Wu, “Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media,” IEEE Trans. Microwave Theory Tech. 44, 2216–2222 (1996). [CrossRef]
  25. S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors via a combination of the finite-difference time-domain technique and the Padé approximation,” IEEE Microwave Guided Wave Lett. 8, 415–417 (1998). [CrossRef]
  26. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 52–58 (2006). [CrossRef]
  27. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited