OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1947–1958

Hybrid liquid crystal photorefractive system for the photorefractive coupling of surface plasmon polaritons

Stephen B. Abbott, Keith R. Daly, Giampaolo D’Alessandro, Malgosia Kaczmarek, and David C. Smith  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 1947-1958 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001947


View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed investigation of a photorefractive surface plasmon polariton system capable of coupling energy between two predefined surface plasmon modes with efficiencies up to 25%. We have investigated the dependence of the diffraction efficiency on the energy, the initial and final wavevectors of the surface plasmon modes, and the cell parameters. We have also developed numerical simulations of the system based upon the defect-free Q-tensor approach and rigorous diffraction theory, which fit the experimental data very well and have allowed us to develop a good theoretical understanding of the performance of these cells. On the basis of the experimental results and theory we discuss the prospects that a hybrid liquid crystal photorefractive system could lead to photorefractive gain for surface plasmon polaritons.

© 2012 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.5330) Nonlinear optics : Photorefractive optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 1, 2012
Manuscript Accepted: June 7, 2012
Published: July 13, 2012

Citation
Stephen B. Abbott, Keith R. Daly, Giampaolo D’Alessandro, Malgosia Kaczmarek, and David C. Smith, "Hybrid liquid crystal photorefractive system for the photorefractive coupling of surface plasmon polaritons," J. Opt. Soc. Am. B 29, 1947-1958 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-1947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical Bioanalytical Chem. 377, 528–539(2003). [CrossRef]
  2. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). [CrossRef]
  3. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005). [CrossRef]
  4. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick and 55 nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef]
  5. G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Analytical Bioanalytical Chem. 382, 1751–1770 (2005). [CrossRef]
  6. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]
  7. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528 (2008). [CrossRef]
  8. I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88 (2002). [CrossRef]
  9. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a Ssingle plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011). [CrossRef]
  10. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2008). [CrossRef]
  11. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007). [CrossRef]
  12. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257–261 (2001). [CrossRef]
  13. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” Appl. Phys. 96, 2616–2623 (2004). [CrossRef]
  14. I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M. Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229–1231 (1997). [CrossRef]
  15. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer, 2006), p. 3.
  16. B. Imbert, H. Rajbenbach, S. Mallick, J. P. Herriau, and J. P. Huignard, “High Photorefractive gain in 2-beam coupling with moving fringes in Gaas-Cr crystals,” Opt. Lett. 13, 327–329 (1988). [CrossRef]
  17. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994). [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light6th (corrected) ed. (Cambridge University, 1997).
  19. J. M. Simon and V. A. Presa, “Surface electromagnetic-waves at the interface with anisotropic media,” J. Mod. Opt. 42, 2201–2211 (1995).
  20. V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79 (2009). [CrossRef]
  21. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals2nd ed. (Oxford University, 1993).
  22. K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects,” Siam J. Appl. Math. 70, 2844–2860(2010). [CrossRef]
  23. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  24. K. Rokushima and J. Yamakita, “Analysis of anisotropic dielectric gratings,” J. Opt. Soc. Am. 73, 901–908 (1983). [CrossRef]
  25. E. N. Glytsis and T. K. Gaylord, “3-Dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990). [CrossRef]
  26. K. R. Daly, “Light-matter interaction in liquid crystal cells,” Ph.D thesis (School of Mathematics, University of Southampton, 2011). http://eprints.soton.ac.uk/176449/1/PhDthesis_krd_published.pdf .
  27. D. Y. K. Ko and J. R. Sambles, “Scattering matrix-method for propagation of radiation in stratified media—Attenuated total reflection studies of liquid-crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988). [CrossRef]
  28. K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid-crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105 (1987). [CrossRef]
  29. K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011). [CrossRef]
  30. T. Kato, T. Kutsuna, and K. Hanabusa, “Liquid-crystalline physical gels formed by the aggregation of trans-(1R,2R)-bis (dodecanoylamino) cyclohexane in a thermotropic nematic liquid crystal. Phase behavior and electro-optic properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 332, 2887–2892 (1999). [CrossRef]
  31. F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998). [CrossRef]
  32. P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” Appl. Phys. 58, 45–57 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited