OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2001–2008

Concurrent nonlinearities in a single nonlinear crystal with multiple phase matching

Kun Ren, Xiao Bin Ren, and Qun Han  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2001-2008 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (744 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a rigorous theory to describe coupled multiple nonlinear processes in a single nonlinear multilayer structure using iteration technique and transfer-matrix method. Pump depletion is taken into account. The validity of the theory is confirmed by analyzing coupled third-harmonic generation (CTHG). The CTHG process consists of two processes: second-harmonic generation and sum-frequency generation. These two processes are coupled together when their phase-matching conditions are satisfied simultaneously. The conversion efficiencies of second-harmonic and third-harmonic under various phase-matching conditions are studied numerically. The results demonstrate that our theory can efficiently and accurately deal with the coupled nonlinearity problem. The model can deal with periodic or aperiodic nonlinear structures. Our approach may be helpful in designing nonlinear photonic crystals and quasi-phase-matching structures.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4160) Nonlinear optics : Multiharmonic generation
(190.7220) Nonlinear optics : Upconversion

ToC Category:
Nonlinear Optics

Original Manuscript: April 10, 2012
Revised Manuscript: June 9, 2012
Manuscript Accepted: June 9, 2012
Published: July 17, 2012

Kun Ren, Xiao Bin Ren, and Qun Han, "Concurrent nonlinearities in a single nonlinear crystal with multiple phase matching," J. Opt. Soc. Am. B 29, 2001-2008 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  2. D. Artigas and D. T. Reid, “Efficient femtosecond optical parametric oscillators based on aperiodically poled nonlinear crystals,” Opt. Lett. 27, 851–853 (2002). [CrossRef]
  3. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997). [CrossRef]
  4. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  5. J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, ‘traffic signal lights,’ by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003). [CrossRef]
  6. O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004). [CrossRef]
  7. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  8. X. P. Zhang, J. Hebling, J. Kuhl, W. W. Rühle, L. Palfalvi, and H. Giessen, “Femtosecond near-IR optical parametric oscillator with efficient intracavity generation of visible light,” J. Opt. Soc. Am. B 19, 2479–2488 (2002). [CrossRef]
  9. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005). [CrossRef]
  10. K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1656 (1999). [CrossRef]
  11. Y. Zhang and B. Y. Gu, “Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification,” Opt. Commun. 192, 417–425 (2001). [CrossRef]
  12. L. J. Chen, X. F. Chen, Y. P. Chen, and Y. X. Xia, “Multiple quasi-phase-matching in two-dimensional domain-inverted aperiodic optical superlattice,” Phys. Lett. A 349, 484–487 (2006). [CrossRef]
  13. Q. F. Zhu, D. Y. Wang, and Y. Zhang, “Design of defective nonlinear photonic crystals for multiple wavelengths’ second harmonic generation,” J. Opt. A: Pure Appl. Opt. 10, 025201 (2008). [CrossRef]
  14. L. M. Zhao, C. Li, Y. S. Zhou, and F. H. Wang, “Multiple wavelength second-harmonic generation in one-dimensional nonlinear photonic crystals,” J. Opt. Soc. Am. B 25, 2010–2014 (2008). [CrossRef]
  15. J. Y. Lai, Y. J. Liu, H. Y. Wu, Y. H. Chen, and S. D. Yang, “Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm,” Opt. Express 18, 5328–5337 (2010). [CrossRef]
  16. M. Lu, X. F. Chen, Y. P. Chen, and Y. X. Xia, “Algorithm to design aperiodic optical superlattice for multiple quasi-phase matching,” Appl. Opt. 46, 4138–4143 (2007). [CrossRef]
  17. U. K. Sapaev and G. Assanto, “Engineered quasi-phase matching for multiple parametric generation,” Opt. Express 17, 3765–3770 (2009). [CrossRef]
  18. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  19. X. H. Wang and B. Y. Gu, “Nonlinear frequency conversion in 2D χ(2) photonic crystals and novel nonlinear double-circle construction,” Eur. Phys. J. B 24, 323–326 (2001). [CrossRef]
  20. J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91, 022903 (2007). [CrossRef]
  21. K. C. Rustagi, S. C. Mehendale, and S. Meenakshi, “Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals,” IEEE J. Quantum Electron. 18, 1029–1041 (1982). [CrossRef]
  22. Y. Jeong and B. Lee, “Matrix analysis for layered quasi-phase-matched media considering multiple reflection and pump wave depletion,” IEEE J. Quantum Electron. 35, 162–178 (1999). [CrossRef]
  23. J. Xia, “Enhancement of second harmonic generation in one-dimensional nonlinear photonic-crystal microcavities,” Opt. Express 17, 20069–20077 (2009). [CrossRef]
  24. M. L. Ren and Z. Y. Li, “Exact iterative solution of second harmonic generation in quasi-phase-matched structures,” Opt. Express 18, 7288–7299 (2010). [CrossRef]
  25. J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007). [CrossRef]
  26. M. L. Ren and Z. Y. Li, “Enhanced nonlinear frequency conversion in defective nonlinear photonic crystals with designed polarization distribution,” J. Opt. Soc. Am. B 27, 1551–1560 (2010). [CrossRef]
  27. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite,” Opt. Lett. 22, 1214–1216 (1997). [CrossRef]
  28. R. W. Boyd, Nonlinear Optics, 2nd ed. (Elsevier, 2003).
  29. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006–3008 (2001). [CrossRef]
  30. J. J. Li, Z. Y. Li, and D. Z. Zhang, “Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method,” Phys. Rev. B 77, 195127 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited