OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2009–2015

Ultraslow optical solitons in atomic media with spontaneously generated coherence

Chao Hang and Guoxiang Huang  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 2009-2015 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002009


View Full Text Article

Enhanced HTML    Acrobat PDF (477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new scheme to generate stable ultraslow optical solitons in lifetime-broadened three-state V-type media via spontaneously generated coherence (SGC). We show that in the linear propagation regime, SGC in the system can result in a significant change of dispersion and absorption, which may be used to completely eliminate absorption and greatly reduce the group velocity of the probe field. In the nonlinear propagation regime, SGC can largely enhance the Kerr nonlinearity of the system. By means of SGC, stable optical solitons with ultraslow propagating velocity and ultralow generation power can be produced. Different from previous works, ultraslow optical solitons obtained in the present system based on SGC have much smaller attenuation during propagation and can be created by using only one laser field.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: March 19, 2012
Revised Manuscript: May 9, 2012
Manuscript Accepted: June 6, 2012
Published: July 17, 2012

Citation
Chao Hang and Guoxiang Huang, "Ultraslow optical solitons in atomic media with spontaneously generated coherence," J. Opt. Soc. Am. B 29, 2009-2015 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-2009


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967). [CrossRef]
  2. M. J. Konopnicki and J. H. Eberly, “Simultaneous propagation of short different-wavelength optical pulses,” Phys. Rev. A 24, 2567–2583 (1981). [CrossRef]
  3. R. Grobe, F. T. Hioe, and J. H. Eberly, “Formation of shape-preserving pulses in a nonlinear adiabatically integrable system,” Phys. Rev. Lett. 73, 3183–3186 (1994). [CrossRef]
  4. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005), and references therein. [CrossRef]
  5. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef]
  6. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005). [CrossRef]
  7. C. Hang, G. Huang, and L. Deng, “Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system,” Phys. Rev. E 73, 036607 (2006). [CrossRef]
  8. G. S. Agarwal, Quantum Optics, Springer Tracts in Modern Physics, Vol. 70 (Springer, 1974).
  9. S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989). [CrossRef]
  10. A. Imamoğlu, “Interference of radiatively broadened resonances,” Phys. Rev. A 40, 2835–2838 (1989). [CrossRef]
  11. J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a Λ system with spontaneously generated coherence,” Phys. Rev. A 65, 063807 (2002). [CrossRef]
  12. Y. Bai, H. Guo, H. Sun, D. Han, C. Liu, and X. Chen, “Effects of spontaneously generated coherence on the conditions for exhibiting lasing without inversion in a V system,” Phys. Rev. A 69, 043814 (2004). [CrossRef]
  13. S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Λ system,” Phys. Rev. A 57, 4014–4018 (1998). [CrossRef]
  14. S. Y. Zhu, R. C. F. Chan, and C. P. Lee, “Spontaneous emission from a three-level atom,” Phys. Rev. A 52, 710–716 (1995). [CrossRef]
  15. S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996). [CrossRef]
  16. P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995–3998 (1996). [CrossRef]
  17. E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998). [CrossRef]
  18. K. T. Kapale, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003). [CrossRef]
  19. I. Gonzalo, M. A. Antón, F. Carreño, and O. G. Calderón, “Squeezing in a Λ-type three-level atom via spontaneously generated coherence,” Phys. Rev. A 72, 033809 (2005). [CrossRef]
  20. Y. P. Niu and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006). [CrossRef]
  21. D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 105, 123602 (2010). [CrossRef]
  22. Z. Tang, G. Li, and Z. Ficek, “Entanglement created by spontaneously generated coherence,” Phys. Rev. A 82, 063837 (2010). [CrossRef]
  23. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011). [CrossRef]
  24. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079–2082 (1999). [CrossRef]
  25. D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. B 15, 55–64 (1982). [CrossRef]
  26. The frequency and wavenumber of the probe field are given by ωp+ω and kp+K(ω), respectively. Thus, ω=0 corresponds to the center frequency of the probe field.
  27. P. M. Anisimov and O. Kocharovskaya, “Decaying-dressed-state analysis of a coherently driven three-level Λ system,” J. Mod. Opt. 55, 3159–3171 (2008). [CrossRef]
  28. P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler–Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011). [CrossRef]
  29. T. Y. Abi-Salloum, “Electromagnetically induced transparency and Autler–Townes splitting: two similar but distinct phenomena in two categories of three-level atomic systems,” Phys. Rev. A 81, 053836 (2010). [CrossRef]
  30. S. Saltiel, S. Tanev, and A. D. Boardman, “High-order nonlinear phase shift caused by cascaded third-order processes,” Opt. Lett. 22, 148–150 (1997). [CrossRef]
  31. H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032–1034 (1996). [CrossRef]
  32. S.-C. Tian, Z.-H. Kang, C.-L. Wang, R.-G. Wan, J. Kou, H. Zhang, Y. Jiang, H.-N. Cui, and J.-Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun. 285, 294–299 (2012). [CrossRef]
  33. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997). [CrossRef]
  34. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997). [CrossRef]
  35. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005). [CrossRef]
  36. T. Nakajima, “Linear and nonlinear optical properties of an autoionizing medium,” Phys. Rev. A 63, 043804 (2000). [CrossRef]
  37. G. S. Agarwal, “Anisotropic vacuum-induced interference in decay channels,” Phys. Rev. Lett. 84, 5500–5503 (2000). [CrossRef]
  38. J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992). [CrossRef]
  39. Z. Ficek, B. J. Dalton, and P. L. Knight, “Fluorescence intensity and squeezing in a driven three-level atom: ladder case,” Phys. Rev. A 51, 4062–4077 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited