OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2110–2115

Carrier-concentration-dependent resonance frequency shift in a metamaterial loaded semiconductor

Seiji Myoga, Tomohiro Amemiya, Atsushi Ishikawa, Nobuhiko Nishiyama, Takuo Tanaka, and Shigehisa Arai  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2110-2115 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examined the electromagnetic responses of near-infrared metamaterials consisting of split-ring resonators fabricated on GaInAs semiconductor layers with different doping levels on an InP substrate. The inductance-capacitance (LC) resonances of the split-ring resonators could be controlled entirely from 52 to 63 THz by changing the carrier concentrations from 2.6×1018 to 2.7×1019cm3. Our results show the feasibility of semiconductor-based tunable metamaterials.

© 2012 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 6, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: June 21, 2012
Published: July 25, 2012

Seiji Myoga, Tomohiro Amemiya, Atsushi Ishikawa, Nobuhiko Nishiyama, Takuo Tanaka, and Shigehisa Arai, "Carrier-concentration-dependent resonance frequency shift in a metamaterial loaded semiconductor," J. Opt. Soc. Am. B 29, 2110-2115 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007). [CrossRef]
  2. T. Jiang, J. Zhao, and Y. Feng, “Stopping light by an air waveguide with anisotropic metamaterial cladding,” Opt. Express 17, 170–177 (2009). [CrossRef]
  3. E. I. Kirby, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides,” J. Opt. A: Pure Appl. Opt. 11, 114027 (2009). [CrossRef]
  4. W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96, 211112 (2010). [CrossRef]
  5. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005). [CrossRef]
  6. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). [CrossRef]
  7. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). [CrossRef]
  8. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004). [CrossRef]
  9. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097–1105 (2006). [CrossRef]
  10. A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” J. Opt. Soc. Am. B 24, 510–515 (2007). [CrossRef]
  11. A. Ishikawa, T. Tanaka, and S. Kawata, “Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies,” Appl. Phys. Lett. 91, 113118 (2007). [CrossRef]
  12. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007). [CrossRef]
  13. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef]
  14. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006). [CrossRef]
  15. X. L. Xu, B. G. Quan, C. Z. Gu, and L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006). [CrossRef]
  16. H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32, 1620–1622 (2007). [CrossRef]
  17. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilimann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008). [CrossRef]
  18. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009). [CrossRef]
  19. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performace InP-based photonic ICs—a tutorial,” J. Lightwave Technol. 29, 554–570 (2011). [CrossRef]
  20. Z. L. Samson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010). [CrossRef]
  21. K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, and S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19, 3973–3983 (2011). [CrossRef]
  22. N. Katsarakis, G. Konstantinides, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, and E. N. Economou, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005). [CrossRef]
  23. M. Shirao, Y. Numajiri, R. Yokoyama, N. Nishiyama, M. Asada, and S. Arai, “Preliminary experiment on direct media conversion from a 1.55 µm optical signal to a sub-terahertz wave signal using photon-generated free carriers,” Jpn. J. Appl. Phys. 48, 090203 (2009). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  25. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  26. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608(2004). [CrossRef]
  27. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited