OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2130–2137

Localization properties at band edge of local density of states in two-dimensional Thue–Morse photonic systems

Luigi Moretti  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2130-2137 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatial distribution of the local density of states (LDOS) at band edges on large-sized two-dimensional Thue–Morse dielectric systems has been investigated by means of a parallel implementation of the multipole expansion method. From the study of the LDOS participation number, the optical modes have been classified as critical, namely as intermediate between uniformly extended and exponentially localized. The exponent of power-law decay of their envelopes has been determined. Furthermore, multifractal analysis by a standard box-counting method has been performed. Almost all of the investigated modes exhibit a strong multifractal character. These results can be exploited for the designing of novel light source devices based on aperiodic order.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(260.2110) Physical optics : Electromagnetic optics
(160.5298) Materials : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: May 22, 2012
Revised Manuscript: June 20, 2012
Manuscript Accepted: June 20, 2012
Published: July 27, 2012

Luigi Moretti, "Localization properties at band edge of local density of states in two-dimensional Thue–Morse photonic systems," J. Opt. Soc. Am. B 29, 2130-2137 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photon. Rev. 6, 178–218 (2012). [CrossRef]
  2. A. D. Mirlin, “Statistics of energy levels and eigenfunctions in disordered systems,” Phys. Rep. 326, 259–382 (2000). [CrossRef]
  3. J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations (Cambridge University, 2003).
  4. Z. Cheng, R. Savit, and R. Merlin, “Structure and electronic properties of Thue–Morse lattices,” Phys. Rev. B 37, 4375–4382 (1988). [CrossRef]
  5. R. Lifshitz, “What is a crystal?” Z. Kristallogr. 222, 313–317 (2007). [CrossRef]
  6. E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69, 397–441 (2006). [CrossRef]
  7. Y. Lai, Z. Zhang, C. Chan, and L. Tsang, “Gap structures and wave functions of classical waves in large-sized two-dimensional quasiperiodic structures,” Phys. Rev. B 74, 0543051 (2006). [CrossRef]
  8. X. Jiang, Y. Zhang, S. Feng, K. C. Huang, Y. Yi, and J. D. Joannopoulos, “Photonic band gaps and localization in the Thue–Morse structures,” Appl. Phys. Lett. 86, 201110(2005). [CrossRef]
  9. Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, “Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals,” Phys. Rev. B 76, 1–5 (2007). [CrossRef]
  10. L. Dal Negro, C. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90, 055501 (2003). [CrossRef]
  11. M. Dulea, M. Johansson, and R. Riklund, “Localization of electrons and electromagnetic waves in a deterministic aperiodic system,” Phys. Rev. B 45, 105–114 (1992). [CrossRef]
  12. L. D. Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals,” Appl. Phys. Lett. 84, 5186–5188 (2004). [CrossRef]
  13. L. Dal Negro, J. H. Yi, V. Nguyen, Y. Yi, J. Michel, and L. C. Kimerling, “Spectrally enhanced light emission from aperiodic photonic structures,” Appl. Phys. Lett. 86, 261905 (2005). [CrossRef]
  14. L. Moretti, I. Rea, L. De Stefano, and I. Rendina, “Periodic versus aperiodic: enhancing the sensitivity of porous silicon based optical sensors,” Appl. Phys. Lett. 90, 191112 (2007). [CrossRef]
  15. J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. D. Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express 20, 3015–3033 (2012). [CrossRef]
  16. S. V. Boriskina, A. Gopinath, and L. D. Negro, “Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures,” Opt. Express 16, 18813–18826 (2008). [CrossRef]
  17. J.-K. Yang, S. V. Boriskina, H. Noh, M. J. Rooks, G. S. Solomon, L. Dal Negro, and H. Cao, “Demonstration of laser action in a pseudorandom medium,” Appl. Phys. Lett. 97, 223101(2010). [CrossRef]
  18. H. Noh, J.-K. Yang, S. V. Boriskina, M. J. Rooks, G. S. Solomon, L. Dal Negro, and H. Cao, “Lasing in Thue–Morse structures with optimized aperiodicity,” Appl. Phys. Lett. 98, 201109 (2011). [CrossRef]
  19. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005). [CrossRef]
  20. S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces” Opt. Express 18, 14568–14576 (2010). [CrossRef]
  21. E. Maciá “Exploiting aperiodic designs in nanophotonic devices,” Rep. Prog. Phys. 75, 036502 (2012). [CrossRef]
  22. A. A. Asatryan, K. Busch, R. McPhedran, L. Botten, C. Martijn de Sterke, and N. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001). [CrossRef]
  23. L. Moretti and V. Mocella, “Two-dimensional photonic aperiodic crystals based on Thue–Morse sequence,” Opt. Express 15, 15314–15323 (2007). [CrossRef]
  24. L. Moretti and V. Mocella, “The square Thue–Morse tiling for photonic application,” Philos. Mag. B 88, 2275–2284(2008). [CrossRef]
  25. V. Twersky, “Multiple scattering of waves and optical phenomena,” J. Opt. Soc. Am. 52, 145–171 (1962). [CrossRef]
  26. M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951). [CrossRef]
  27. L. C. Botten, N.-A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. D. Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part II. Properties and implementation,” J. Opt. Soc. Am. A 17, 2177–2190 (2000). [CrossRef]
  28. L. C. Botten, N.-A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. D. Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method,” J. Opt. Soc. Am. A 17, 2165–2176 (2000). [CrossRef]
  29. A. A. Asatryan, S. Fabre, K. Busch, R. McPhedran, L. C. Botten, M. de Sterke, and N. A. Nicorovici, “Two-dimensional local density of states in two-dimensional photonic crystals,” Opt. Express 8, 191–196 (2001). [CrossRef]
  30. G. Tayeb and D. Maystre, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A 14, 3323–3332 (1997). [CrossRef]
  31. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide (SIAM, 1997).
  32. C. Rockstuhl, U. Peschel, and F. Lederer, “Correlation between single-cylinder properties and bandgap formation in photonic structures,” Opt. Lett. 31, 1741–1743 (2006). [CrossRef]
  33. J. L. Pichard and G. Sarma, “Power-law decay and fractal character of eigenstates in two-dimensional disordered systems,” J. Phys. C 18, 3457–3466 (1985). [CrossRef]
  34. T. Rieth and M. Schreiber, “Numerical investigation of electronic wave functions in quasiperiodic lattices,” J. Phys. Condens. Matter 10, 783–800 (1998). [CrossRef]
  35. H. Q. Yuan, U. Grimm, P. Repetowicz, and M. Schreiber, “Energy spectra, wavefunctions and quantum diffusion for quasiperiodic systems,” Phys. Rev. B 62, 15569–15578 (2000). [CrossRef]
  36. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010). [CrossRef]
  37. M. Janssen, “Multifractal analysis of broadly distributed observables at criticality,” Int. J. Mod. Phys. B 8, 943–984(1994). [CrossRef]
  38. A. Chhabra and R. V. Jensen, “Direct determination of f(α) singularity spectrum,” Phys. Rev. Lett. 62, 1327–1330 (1989). [CrossRef]
  39. M. Schreiber and H. Grussbach, “Multifractal wave function at Anderson transition,” Phys. Rev. Lett. 67, 607–610 (1991). [CrossRef]
  40. A. Rodriguez, L. J. Vasquez, and R. A. Roemer, “Optimisation of multifractal analysis using box-size scaling,” Eur. Phys. J. B 67, 77–82 (2009). [CrossRef]
  41. C. Vanneste and P. Sebbah, “Complexity of two-dimensional quasimodes at the transition from weak scattering to Anderson localization,” Phys. Rev. A 79, 041802 (2009). [CrossRef]
  42. J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Bryne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Tureci, and C. Vanneste, “Mode of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited