OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2166–2175

Optimal liquid crystal modulation controlled by surface alignment and anchoring strength

Keith R. Daly, Nina Podoliak, Oleksandr Buchnev, Malgosia Kaczmarek, and Giampaolo D’Alessandro  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2166-2175 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spatial modulation of liquid crystals can be controlled and adjusted by light polarization, the degree of pretilt on the substrates, anchoring strength, and the experimental geometry. In particular, strong anchoring can affect the liquid crystal orientation in opposite ways, depending on the polarization of the incident light. Here we present a theoretical model that describes the liquid crystal modulation and how it can be controlled and optimized. The model is valid for electric fields with a uniform component that is large with respect to the spatial modulation, a situation typical of spatial light modulators and photorefractive cells.

© 2012 Optical Society of America

OCIS Codes
(000.3870) General : Mathematics
(160.3710) Materials : Liquid crystals
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: April 20, 2012
Manuscript Accepted: May 22, 2012
Published: July 27, 2012

Keith R. Daly, Nina Podoliak, Oleksandr Buchnev, Malgosia Kaczmarek, and Giampaolo D’Alessandro, "Optimal liquid crystal modulation controlled by surface alignment and anchoring strength," J. Opt. Soc. Am. B 29, 2166-2175 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, 1990).
  2. I. C. Khoo, Liquid Crystals (Wiley, 2007).
  3. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011). [CrossRef]
  4. P. R. Ashley and J. H. Davis, “Amorphous silicon photoconductor in a liquid crystal spatial light modulator,” Appl. Opt. 26, 241–246 (1987). [CrossRef]
  5. D. Armitage, J. L. Thackara, and W. D. Eades, “Photoaddressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989). [CrossRef]
  6. U. Efron, Spatial Light Modulator Technology: Materials, Devices, and Applications (Dekker, 1995).
  7. U. Bortolozzo, M. G. Clerc, C. Falcon, S. Residori, and R. Rojas, “Localized states in bistable pattern-forming systems,” Phys. Rev. Lett. 96, 214501 (2006). [CrossRef]
  8. S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008). [CrossRef]
  9. G. Mínguez-Vega, V. R. Supradeepa, O. Mendoza-Yero, and A. M. Weiner, “Reconfigurable all-diffractive optical filters using phase-only spatial light modulators,” Opt. Lett. 35, 2406–2408 (2010). [CrossRef]
  10. A. Alberucci, A. Piccardi, U. Bortolozzo, S. Residori, and G. Assanto, “Nematicon all-optical control in liquid crystal light valves,” Opt. Lett. 35, 390–392 (2010). [CrossRef]
  11. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy.” Laser Photon. Rev. 5, 81–101 (2011). [CrossRef]
  12. P. Aubourg, J. P. Huignard, M. Hareng, and R. A. Mullen, “Liquid crystal light valve using bulk monocrystalline Bi_12SiO_20 as the photoconductive material,” Appl. Opt. 21, 3706–3712 (1982). [CrossRef]
  13. A. Miniewicz, K. Komorowska, J. Vanhanen, and J. Parka, “Surface-assisted optical storage in a nematic liquid crystal cell via photoinduced charge-density modulation,” Org. Electron. 2, 155–163 (2001). [CrossRef]
  14. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616–2623 (2004). [CrossRef]
  15. G. Cook, A. V. Glushchenko, V. Y. Reshetnyak, E. R. Beckel, M. A. Saleh, and D. R. Evans, “Liquid crystal inorganic hybrid photorefractives,” Winter Topical Meeting Series, 2008 (IEEE/LEOS, 2008), pp. 129–130.
  16. G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, “Nanoparticle doped organic-inorganic hybrid photorefractives,” Opt. Express 16, 4015–4022 (2008). [CrossRef]
  17. D. C. Jones and G. Cook, “Theory of beam coupling in a hybrid photorefractive-liquid crystal cell,” Opt. Commun. 232, 399–409 (2004). [CrossRef]
  18. V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79, 11703 (2009). [CrossRef]
  19. R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293, 1296–1299 (2001). [CrossRef]
  20. G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monte Carlo study,” Opt. Mater. 33, 1459–1463 (2011). [CrossRef]
  21. K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “Regime independent coupled-wave equations in anisotropic photorefractive media,” Appl. Phys. B: Lasers Opt. 95, 589–596 (2009). [CrossRef]
  22. K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects,” SIAM J. Appl. Math. 70, 2844–2860 (2010). [CrossRef]
  23. V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Simulation of photorefractive effect in thin liquid crystal film,” Mol. Cryst. Liq. Cryst. 489, 204–213 (2008). [CrossRef]
  24. A. Rapini and M. Papoular, “Distorsion d’une lamelle nematique sous champ magnetique conditions d’ancrage aux parois,” Le Journal de Physique Colloques 30, 54–56 (1969).
  25. A. C. King, J. Billingham, and S. R. Otto, Differential Equations: Linear, Nonlinear, Ordinary, Partial (Cambridge University, 2003).
  26. K. R. Daly, S. B. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 28, 1874–1881 (2011). [CrossRef]
  27. R. H. Self, C. P. Please, and T. J. Sluckin, “Deformation of nematic liquid crystals in an electric field,” Eur. J. Appl. Math. 13, 1–23 (2002). [CrossRef]
  28. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1993).
  29. A. Sonnet, A. Kilian, and S. Hess, “Alignment tensor versus director: description of defects in nematic liquid crystals,” Phys. Rev. E 52, 718–722 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited