OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2222–2228

Wide-angle absorber achieved by optical black holes using graded index photonic crystals

Hung-Wen Wang and Lien-Wen Chen  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2222-2228 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1163 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design and characterization of a wide-angle optical absorber in the near infrared regime, based on an optical board embedded with periodic optical black holes using graded index photonic crystals. The implementation of the proposed system is validated within the lowest band. The finite element method is employed to simulate the electromagnetic wave propagation of the designed device. Moreover, the influences of the angles of wave incidence and periods of optical black holes on absorption efficiency are studied. The results show that the optical absorber using a thin metal coating at the bottom exhibits a high-efficiency absorption performance over a wide range of angles. Since the optical black hole is composed of the full dielectric materials, it eases the experimental fabrication.

© 2012 Optical Society of America

OCIS Codes
(260.2065) Physical optics : Effective medium theory
(160.5298) Materials : Photonic crystals
(160.2710) Materials : Inhomogeneous optical media

ToC Category:

Original Manuscript: April 27, 2012
Revised Manuscript: June 10, 2012
Manuscript Accepted: June 30, 2012
Published: August 1, 2012

Hung-Wen Wang and Lien-Wen Chen, "Wide-angle absorber achieved by optical black holes using graded index photonic crystals," J. Opt. Soc. Am. B 29, 2222-2228 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009). [CrossRef]
  2. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17, 16745–16749 (2009). [CrossRef]
  3. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008). [CrossRef]
  4. L. Dai and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009). [CrossRef]
  5. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009). [CrossRef]
  6. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]
  8. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009). [CrossRef]
  9. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009). [CrossRef]
  10. C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18, 6598–6603 (2010). [CrossRef]
  11. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef]
  12. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010). [CrossRef]
  13. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011). [CrossRef]
  14. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009). [CrossRef]
  15. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009). [CrossRef]
  16. C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B 27, 2020–2025 (2010). [CrossRef]
  17. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010). [CrossRef]
  18. W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010). [CrossRef]
  19. H. W. Wang and L. W. Chen, “A cylindrical optical black hole using graded index photonic crystals,” J. Appl. Phys. 109, 103104 (2011). [CrossRef]
  20. J. Qiu, L. H. Liu, and P. F. Hsu, “Radiative properties of optical board embedded with optical black holes,” J. Quant. Spectrosc. Radiat. Transfer 112, 832–838 (2011). [CrossRef]
  21. K. V. Nerkararyan, S. K. Nerkararyan, and S. I. Bozhevolnyi, “Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons,” Opt. Lett. 36, 4311–4313 (2011). [CrossRef]
  22. E. W. Marchand, Gradient Index Optics (Academic, 1978).
  23. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).
  24. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005). [CrossRef]
  25. H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009). [CrossRef]
  26. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987). [CrossRef]
  27. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987). [CrossRef]
  28. E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006). [CrossRef]
  29. H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15, 1240–1253 (2007). [CrossRef]
  30. A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009). [CrossRef]
  31. E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol. 29, 1937–1943 (2011). [CrossRef]
  32. B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010). [CrossRef]
  33. B. Vasic and R. Gajic, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110, 053103 (2011). [CrossRef]
  34. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  35. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).
  36. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  37. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  38. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).
  39. M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime,” Appl. Phys. Lett. 100, 124101 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited