OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2229–2242

Toward a wave turbulence formulation of statistical nonlinear optics

Josselin Garnier, Mietek Lisak, and Antonio Picozzi  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 2229-2242 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002229


View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

During this last decade, several remarkable phenomena inherent to the nonlinear propagation of incoherent optical waves have been reported in the literature. This article is aimed at providing a generalized wave turbulence kinetic formulation of random nonlinear waves governed by the nonlinear Schrödinger equation in the presence of a nonlocal or a noninstantaneous nonlinear response function. Depending on the amount of nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous (nonstationary) statistics of the incoherent wave, different types of kinetic equations are obtained. In the spatial domain, when the incoherent wave exhibits fluctuations that are statistically homogeneous in space, the relevant kinetic equation is the wave turbulence (Hasselmann) kinetic equation. It describes, in particular, the process of optical wave thermalization to thermodynamic equilibrium, which slows down significantly as the interaction becomes highly nonlocal. When the incoherent wave is characterized by inhomogeneous statistical fluctuations, different forms of the Vlasov equation are derived, which depend on the amount of nonlocality in the system. This Vlasov approach describes, in particular, the processes of incoherent modulational instability and the formation of localized incoherent soliton structures. In the temporal domain, the noninstantaneous nonlinear response function is constrained by the causality condition. It turns out that the relevant kinetic equation has a form analogous to the weak Langmuir turbulence equation, which describes, in particular, the formation of nonlocalized spectral incoherent solitons. In the regime of a highly noninstantaneous nonlinear response and a stationary statistics of the incoherent wave, the weak Langmuir turbulence equation reduces to the Korteweg–de Vries equation. Conversely, in the regime of a highly noninstantaneous response in the presence of a nonstationary statistics, we derive a long-range Vlasov-like kinetic equation in the temporal domain, whose self-consistent potential is constrained by the causality condition. From a broader perspective, this work indicates that the wave turbulence theory may constitute the appropriate theoretical framework to formulate statistical nonlinear optics.

© 2012 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 27, 2012
Manuscript Accepted: June 5, 2012
Published: August 1, 2012

Citation
Josselin Garnier, Mietek Lisak, and Antonio Picozzi, "Toward a wave turbulence formulation of statistical nonlinear optics," J. Opt. Soc. Am. B 29, 2229-2242 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-2229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  2. Y. S. Kivshar and G. P. Agrawal, Optical Solitons : From Fibers to Photonic Crystals (Academic Press, 2003).
  3. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  4. M. Mitchell, Z. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77, 490–493 (1996). [CrossRef]
  5. M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature (London) 387, 880–883 (1997). [CrossRef]
  6. D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, “Theory of incoherent self-focusing in biased photorefractive media” Phys. Rev. Lett. 78, 646–649 (1997). [CrossRef]
  7. M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Theory of self-trapped spatially incoherent light beams,” Phys. Rev. Lett. 79, 4990–4993 (1997). [CrossRef]
  8. O. Bang, D. Edmundson, and W. Krolikowski, “Collapse of incoherent light beams in inertial bulk Kerr media,” Phys. Rev. Lett. 83, 5479–5482 (1999). [CrossRef]
  9. W. Krolikowski, O. Bang, and J. Wyller, “Nonlocal incoherent solitons,” Phys. Rev. E 70, 036617 (2004). [CrossRef]
  10. M. Peccianti and G. Assanto, “Incoherent spatial solitary waves in nematic liquid crystals,” Opt. Lett. 26, 1791–1793 (2001). [CrossRef]
  11. M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000). [CrossRef]
  12. D. Kip, M. Soljacic, M. Segev, E. Eugenieva, and D. N. Christodoulides, “Modulation instability and pattern formation in spatially incoherent light beams,” Science 290, 495–498 (2000). [CrossRef]
  13. A. Sauter, S. Pitois, G. Millot, and A. Picozzi, “Incoherent modulation instability in instantaneous nonlinear Kerr media,” Opt. Lett. 30, 2143–2145 (2005). [CrossRef]
  14. D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5116 (1998). [CrossRef]
  15. Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Self-trapping of dark incoherent light beams,” Science 280, 889–892 (1998). [CrossRef]
  16. H. Buljan, O. Cohen, J. W. Fleischer, T. Schwartz, M. Segev, Z. H. Musslimani, N. K. Efremidis, and D. N. Christodoulides, “Random-phase solitons in nonlinear periodic lattices,” Phys. Rev. Lett. 92, 223901 (2004). [CrossRef]
  17. O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature (London) 433, 500–503(2005). [CrossRef]
  18. G. A. Pasmanik, “Self-interaction of incoherent light beams,” Sov. Phys. JETP 39, 234–238 (1974).
  19. M. Mitchell, M. Segev, T. Coskun, and D. N. Christodoulides, “Theory of self-trapped spatially incoherent light beams,” Phys. Rev. Lett. 79, 4990–4993 (1997). [CrossRef]
  20. D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, “Theory of incoherent self-focusing in biased photorefractive media,” Phys. Rev. Lett. 78, 646–649 (1997). [CrossRef]
  21. B. Hall, M. Lisak, D. Anderson, R. Fedele, and V. E. Semenov, “Statistical theory for incoherent light propagation in nonlinear media,” Phys. Rev. E 65, 035602 (2002). [CrossRef]
  22. T. Hansson, D. Anderson, M. Lisak, V. E. Semenov, and U. Osterberg, “Propagation of partially coherent light beams with parabolic intensity distribution in noninstantaneous nonlinear Kerr media,” J. Opt. Soc. Am. B 25, 1780–1785 (2008). [CrossRef]
  23. D. N. Christodoulides, E. D. Eugenieva, T. H. Coskun, M. Segev, and M. Mitchell, “Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media,” Phys. Rev. E 63, 035601 (2001). [CrossRef]
  24. M. Lisak, L. Helczynski, and D. Anderson, “Relation between different formalisms describing partially incoherent wave propagation in nonlinear optical media,” Opt. Commun. 220, 321–323 (2003). [CrossRef]
  25. N. Akhmediev, W. Krolikowski, and A. W. Snyder, “Partially voherent solitons of variable shape,” Phys. Rev. Lett. 81, 4632–4635 (1998). [CrossRef]
  26. T. Hansson, M. Lisak, and D. Anderson, “Integrability and conservation laws for the nonlinear evolution equations of partially coherent waves in noninstantaneous Kerr media,” Phys. Rev. Lett. 108, 063901 (2012). [CrossRef]
  27. I. B. Bernstein, J. M. Green, and M. D. Kruskal, “Exact nonlinear plasma oscillations,” Phys. Rev. 108, 546–550 (1957). [CrossRef]
  28. A. Hasegawa, “Dynamics of an ensemble of plane waves in nonlinear dispersive media,” Phys. Fluids 18, 77–79 (1975). [CrossRef]
  29. A. Hasegawa, “Envelope soliton of random phase waves,” Phys. Fluids 20, 2155–2156 (1977). [CrossRef]
  30. D. V. Dylov and J. W. Fleischer, “Observation of all-optical bump-on-tail instability,” Phys. Rev. Lett. 100, 103903 (2008). [CrossRef]
  31. J. Garnier, J.-P. Ayanides, and O. Morice, “Propagation of partially coherent light with the Maxwell–Debye equation,” J. Opt. Soc. Am. B 20, 1409–1417 (2003). [CrossRef]
  32. J. Garnier and A. Picozzi, “Unified kinetic formulation of incoherent waves propagating in nonlinear media with noninstantaneous response,” Phys. Rev. A 81, 033831 (2010). [CrossRef]
  33. O. Cohen, H. Buljan, T. Schwartz, J. Fleischer, and M. Segev, “Incoherent solitons in instantaneous nonlocal nonlinear media,” Phys. Rev. E 73, 015601 (2006). [CrossRef]
  34. C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, “Incoherent spatial solitons in effectively-instantaneous nonlocal nonlinear media,” Nat. Photon. 2, 371–376 (2008). [CrossRef]
  35. A. Picozzi and J. Garnier, “Incoherent soliton turbulence in nonlocal nonlinear media,” Phys. Rev. Lett. 107, 233901(2011). [CrossRef]
  36. A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013 (2001). [CrossRef]
  37. A. Picozzi, M. Haelterman, S. Pitois, and G. Millot, “Incoherent solitons in instantaneous response nonlinear media,” Phys. Rev. Lett. 92, 143906 (2004). [CrossRef]
  38. M. Wu, P. Krivosik, B. A. Kalinikos, and C. E. Patton, “Random generation of coherent solitary waves from incoherent waves,” Phys. Rev. Lett. 96, 227202 (2006). [CrossRef]
  39. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, “The physics of dipolar bosonic quantum gases,” Rep. Prog. Phys. 72, 126401 (2009). [CrossRef]
  40. S. Skupin, M. Saffman, and W. Krolikowski, “Nonlocal stabilization of nonlinear beams in a self-focusing atomic vapor,” Phys. Rev. Lett. 98, 263902 (2007). [CrossRef]
  41. C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91, 073901 (2003). [CrossRef]
  42. C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004). [CrossRef]
  43. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992). [CrossRef]
  44. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99, 043903 (2007). [CrossRef]
  45. C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo, “Observation of a gradient catastrophe generating solitons,” Phys. Rev. Lett. 102, 083902 (2009). [CrossRef]
  46. A. G. Litvak and A. M. Sergeev, “One dimensional collapse of plasma waves,” JETP Lett. 27, 517–520 (1978).
  47. J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002). [CrossRef]
  48. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, “Collapse arrest and soliton stabilization in nonlocal nonlinear media,” Phys. Rev. E 66, 046619 (2002). [CrossRef]
  49. S. Skupin, O. Bang, D. Edmundson, and W. Krolikowski, “Stability of two-dimensional spatial solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 066603 (2006). [CrossRef]
  50. A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006). [CrossRef]
  51. W. Krolikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B 6, S288–S294 (2004). [CrossRef]
  52. A. Snyder and D. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997). [CrossRef]
  53. V. E. Zakharov, A. N. Pushkarev, V. F. Shvets, and V. V. Yan’kov, “Soliton turbulence,” JETP Lett. 48, 83–87 (1988).
  54. R. Jordan and C. Josserand, “Self-organization in nonlinear wave turbulence,” Phys. Rev. E 61, 1527–1539 (2000). [CrossRef]
  55. B. Rumpf and A. C. Newell, “Coherent structures and entropy in constrained, modulationally unstable, nonintegrable systems,” Phys. Rev. Lett. 87, 054102 (2001). [CrossRef]
  56. B. Rumpf and A. C. Newell, “Localization and coherence in nonintegrable systems,” Physica D 184, 162–191 (2003). [CrossRef]
  57. K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374, 3585–3589 (2010). [CrossRef]
  58. V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, “Hamiltonian approach to the description of non-linear plasma phenomena,” Phys. Rep. 129, 285–366 (1985). [CrossRef]
  59. M. Onorato, A. Osborne, R. Fedele, and M. Serio, “Landau damping and coherent structures in narrow-banded 1+1 deep water gravity waves,” Phys. Rev. E 67, 046305 (2003). [CrossRef]
  60. A. Campa, T. Dauxois, and S. Ruffo, “Statistical mechanics and dynamics of solvable models with long-range interactions,” Phys. Rep. 480, 57–159 (2009). [CrossRef]
  61. A. Picozzi, S. Pitois, and G. Millot, “Spectral incoherent solitons: a localized soliton behavior in the frequency domain,” Phys. Rev. Lett. 101, 093901 (2008). [CrossRef]
  62. C. Michel, B. Kibler, and A. Picozzi, “Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response,” Phys. Rev. A 83, 023806 (2011). [CrossRef]
  63. B. Kibler, C. Michel, A. Kudlinski, B. Barviau, G. Millot, and A. Picozzi, “Emergence of spectral incoherent solitons through supercontinuum generation in photonic crystal fiber,” Phys. Rev. E 84, 066605 (2011). [CrossRef]
  64. S. L. Musher, A. M. Rubenchik, and V. E. Zakharov, “Weak Langmuir turbulence,” Phys. Rep. 252, 177–274 (1995). [CrossRef]
  65. Y. B. Zel’dovich, E. V. Levich, and R. A. Syunyaev, “Stimulated Compton interaction between Maxwellian electrons and spectrally narrow radiation,” Sov. Phys. JETP 35, 733–740 (1972).
  66. C. Montes, J. Peyraud, and M. Hénon, “One-dimensional boson soliton collisions,” Phys. Fluids 22, 176–182 (1979). [CrossRef]
  67. V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, “Weak Langmuir turbulence of an isothermal plasma,” Sov. Phys. JETP 42, 80–86 (1975).
  68. C. Montes, “Photon soliton and fine structure due to nonlinear Compton scattering,” Phys. Rev. A 20, 1081–1095 (1979). [CrossRef]
  69. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, 1992).
  70. V. E. Zakharov, F. Dias, and A. Pushkarev, “One-dimensional wave turbulence,” Phys. Rep. 398, 1–65 (2004). [CrossRef]
  71. A. C. Newell, “The closure problem in a system of random gravity waves,” Rev. Geophys. 6, 1–31 (1968). [CrossRef]
  72. A. C. Newell, S. Nazarenko, and L. Biven, “Wave turbulence and intermittency,” Physica D 152, 520–550 (2001). [CrossRef]
  73. A. C. Newell and B. Rumpf, “Wave turbulence,” Ann. Rev. Fluids Mech. 43, 59–78 (2001).
  74. S. Nazarenko, Wave Turbulence, Lectures Notes in Physics825 (Springer, 2011).
  75. K. Hasselmann, “On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory,” J. Fluid Mech. 12, 481–500 (1962). [CrossRef]
  76. K. Hasselmann, “On the non-linear energy transfer in a gravity-wave spectrum. Part 2. Conservation theorems; wave-particle analogy; irreversibility,” J. Fluid Mech. 15, 273–281 (1963). [CrossRef]
  77. A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005). [CrossRef]
  78. S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, “Velocity locking of incoherent nonlinear wave packets,” Phys. Rev. Lett. 97, 033902 (2006). [CrossRef]
  79. A. Picozzi, “Spontaneous polarization induced by natural thermalization of incoherent light,” Opt. Express 16, 17171–17185 (2008). [CrossRef]
  80. A. Picozzi and S. Rica, “Coherence absorption and condensation induced by thermalization of incoherent nonlinear fields,” Europhys. Lett. 84, 34004 (2008). [CrossRef]
  81. P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010). [CrossRef]
  82. C. Michel, P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Influence of third-order dispersion on the propagation of incoherent light in optical fibers,” Opt. Lett. 35, 2367–2369 (2010). [CrossRef]
  83. D. B. S. Soh, J. P. Koplow, S. W. Moore, K. L. Schroder, and W. L. Hsu, “The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers,” Opt. Express 18, 22393–22405 (2010). [CrossRef]
  84. P. Suret, A. Picozzi, and S. Randoux, “Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers,” Opt. Express 19, 17852–17863 (2011). [CrossRef]
  85. C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, “Condensation of classical nonlinear waves,” Phys. Rev. Lett. 95, 263901 (2005). [CrossRef]
  86. G. Düring, A. Picozzi, and S. Rica, “Breakdown of weak-turbulence and nonlinear wave condensation,” Physica D 238, 1524–1549 (2009). [CrossRef]
  87. M. J. Davis, S. A. Morgan, and K. Burnett, “Simulations of Bose fields at finite temperature,” Phys. Rev. Lett. 87, 160402 (2001). [CrossRef]
  88. P. Aschieri, J. Garnier, C. Michel, V. Doya, and A. Picozzi, “Condensation and thermalization of classsical optical waves in a waveguide,” Phys. Rev. A 83, 033838 (2011). [CrossRef]
  89. B. Barviau, B. Kibler, S. Coen, and A. Picozzi, “Towards a thermodynamic description of supercontinuum generation,” Opt. Lett. 33, 2833–2835 (2008). [CrossRef]
  90. B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79, 063840 (2009). [CrossRef]
  91. B. Barviau, B. Kibler, A. Kudlinski, A. Mussot, G. Millot, and A. Picozzi, “Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber,” Opt. Express 17, 7392–7406 (2009). [CrossRef]
  92. S. Lagrange, H. R. Jauslin, and A. Picozzi, “Thermalization of the dispersive three-wave interaction,” Europhys. Lett. 79, 64001 (2007). [CrossRef]
  93. U. Bortolozzo, J. Laurie, S. Nazarenko, and S. Residori, “Optical wave turbulence and the condensation of light,” J. Opt. Soc. Am. B 26, 2280–2284 (2009). [CrossRef]
  94. Y. Silberberg, Y. Lahini, E. Small, and R. Morandotti, “Universal correlations in a nonlinear periodic 1D system,” Phys. Rev. Lett. 102, 233904 (2009). [CrossRef]
  95. C. Conti, M. A. Schmidt, P. St. J. Russell, and F. Biancalana, “Highly noninstantaneous solitons in liquid-core photonic crystal fibers,” Phys. Rev. Lett. 105, 263902 (2010). [CrossRef]
  96. A. Picozzi and M. Haelterman, “Condensation in Hamiltonian parametric wave interaction,” Phys. Rev. Lett. 92, 103901 (2004). [CrossRef]
  97. C. Conti, M. Leonetti, A. Fratalocchi, L. Angelani, and G. Ruocco, “Condensation in disordered lasers: theory, 3D+1 simulations, and experiments,” Phys. Rev. Lett. 101, 143901 (2008). [CrossRef]
  98. R. Weill, B. Fischer, and O. Gat, “Light-mode condensation in actively-mode-locked lasers,” Phys. Rev. Lett. 104, 173901 (2010). [CrossRef]
  99. R. Weill, B. Levit, A. Bekker, O. Gat, and B. Fischer, “Laser light condensate: experimental demonstration of light-mode condensation in actively mode locked laser,” Opt. Express 18, 16520–16525 (2010). [CrossRef]
  100. J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature 468, 545–548 (2010). [CrossRef]
  101. C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media via digital holography,” Nat. Photon. 3, 211–215 (2009). [CrossRef]
  102. A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves,” Opt. Lett. 29, 1653–1655 (2004). [CrossRef]
  103. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80, 031804 (2009). [CrossRef]
  104. S. Babin, D. Churkin, A. Ismagulov, S. Kablukov, and E. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007). [CrossRef]
  105. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77, 033803 (2008). [CrossRef]
  106. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photon. 4, 231–235 (2010). [CrossRef]
  107. C. Michel, M. Haelterman, P. Suret, S. Randoux, R. Kaiser, and A. Picozzi, “Thermalization and condensation in an incoherently pumped passive optical cavity,” Phys. Rev. A 84, 033848 (2011). [CrossRef]
  108. Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photon. 4, 721–726 (2010). [CrossRef]
  109. B. Kibler, C. Michel, J. Garnier, and A. Picozzi, “Temporal dynamics of incoherent waves in noninstantaneous response nonlinear Kerr media,” Opt. Lett. 37, 2472–2474 (2012).
  110. A. Picozzi and M. Haelterman, “Hidden coherence along space-time trajectories in parametric wave mixing,” Phys. Rev. Lett. 88, 083901 (2002). [CrossRef]
  111. A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010). [CrossRef]
  112. A. Stabinis, V. Pyragaite, G. Tamoauskas, and A. Piskarskas, “Spectrum of second-harmonic radiation generated from incoherent light,” Phys. Rev. A 84, 043813 (2011). [CrossRef]
  113. G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited