OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2282–2287

Self-formed two-dimensional near-wavelength microstructures on copper induced by multipulse femtosecond vector optical fields

Kai Lou, Sheng-Xia Qian, Zhi-Cheng Ren, Xi-Lin Wang, Yongnan Li, Chenghou Tu, and Hui-Tian Wang  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2282-2287 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002282


View Full Text Article

Enhanced HTML    Acrobat PDF (3239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-dimensional near-wavelength microstructures have been fabricated on copper film by femtosecond vector optical fields with different spatial polarization distribution, at a central wavelength of 800 nm, a pulse duration of 70fs, and a repetition rate of 1 kHz. In the induced microstructures, fine structures with interperpendicular orientations have been observed under the irradiation of a few pulses. Under the irradiation of the multipulse femtosecond vector field, differently from on the dielectric and semiconductor surfaces, the induced microstructures on the metallic copper surface exhibit an anisotropic extending feature dependent on the polarization distribution of the vector field. The physics behind this unique feature are the anisotropic excitation and propagation of surface plasmons, caused by the coupling of the subsequent irradiation pulses with the existing microstructure.

© 2012 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(320.2250) Ultrafast optics : Femtosecond phenomena
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Ultrafast Optics

History
Original Manuscript: March 15, 2012
Revised Manuscript: July 1, 2012
Manuscript Accepted: July 1, 2012
Published: August 3, 2012

Citation
Kai Lou, Sheng-Xia Qian, Zhi-Cheng Ren, Xi-Lin Wang, Yongnan Li, Chenghou Tu, and Hui-Tian Wang, "Self-formed two-dimensional near-wavelength microstructures on copper induced by multipulse femtosecond vector optical fields," J. Opt. Soc. Am. B 29, 2282-2287 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003). [CrossRef]
  2. J. S. Preston, H. M. van Driel, and J. E. Sipe, “Order-disorder transitions in the melt morphology of laser-irradiated silicon,” Phys. Rev. Lett. 58, 69–72 (1987). [CrossRef]
  3. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010). [CrossRef]
  4. V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011). [CrossRef]
  5. R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B 27, 1077–1082 (2010). [CrossRef]
  6. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009). [CrossRef]
  7. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009). [CrossRef]
  8. T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108, 073523 (2010). [CrossRef]
  9. S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009). [CrossRef]
  10. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19, 9035–9043 (2011). [CrossRef]
  11. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006). [CrossRef]
  12. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  13. K. Lou, S. X. Qian, X. L. Wang, Y. N. Li, B. Gu, C. H. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20, 120–127 (2012). [CrossRef]
  14. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3552 (2007). [CrossRef]
  15. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004). [CrossRef]
  16. M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002). [CrossRef]
  17. M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010). [CrossRef]
  18. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54, 6227–6244 (1996). [CrossRef]
  19. N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33, 2137–2139 (2008). [CrossRef]
  20. T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photon-electron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79, 085425 (2009). [CrossRef]
  21. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited