OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2288–2296

Design of phase-switched two-input Kerr flip-flops

Brian A. Daniel and Govind P. Agrawal  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2288-2296 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002288


View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-input configuration for microresonators, exhibiting bistability owing to Kerr nonlinearity, could be used for the realization of optical flip-flops with switching speeds that are not limited by thermal effects. We present design considerations for such devices. The concept of phase switching is explained, and the results of numerical simulations clarify the conditions under which it will succeed. A thermal model is presented and used to understand the influence of the material properties and cavity structure on important operating parameters that will be relevant to any experimental effort to realize the device.

© 2012 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 3, 2012
Manuscript Accepted: June 10, 2012
Published: August 3, 2012

Citation
Brian A. Daniel and Govind P. Agrawal, "Design of phase-switched two-input Kerr flip-flops," J. Opt. Soc. Am. B 29, 2288-2296 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. N. Maywar, K. P. Solomon, and G. P. Agrawal, “Remote optical control of an optical flip-flop,” Opt. Lett. 32, 3260–3262 (2007). [CrossRef]
  2. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010). [CrossRef]
  3. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989). [CrossRef]
  4. V. S. Ilchenko and M. L. Gorodetsky, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
  5. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004). [CrossRef]
  6. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005). [CrossRef]
  7. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008). [CrossRef]
  8. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998). [CrossRef]
  9. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010). [CrossRef]
  10. A. E. Kaplan and P. Meystre, “Directionally asymmetrical bistability in a symmetrically pumped nonlinear ring interferometer,” Opt. Commun. 40, 229–232 (1982). [CrossRef]
  11. B. A. Daniel and G. P. Agrawal, “Phase-switched all-optical flip-flops using two-input bistable resonators,” IEEE Photon. Technol. Lett. 24, 479–481 (2012). [CrossRef]
  12. M. Haelterman, P. Mandel, J. Danckaert, H. Thienpont, and I. Veretennicoff, “Two-beam nonlinear Fabry–Perot transmission characteristics,” Opt. Commun. 74, 238–244 (1989). [CrossRef]
  13. M. Haelterman and P. Mandel, “Pitchfork bifurcation using a two-beam nonlinear Fabry–Perot interferometer: an analytical study,” Opt. Lett. 15, 1412–1414 (1990). [CrossRef]
  14. M. Haelterman, “All-optical set-reset flip-flop operation in the nonlinear Fabry–Pérot interferometer,” Opt. Commun. 86, 189–191 (1991). [CrossRef]
  15. G. P. Agrawal and C. Flytzanis, “Two-photon double-beam optical bistability,” Phys. Rev. Lett. 44, 1058–1061 (1980). [CrossRef]
  16. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  17. B. A. Daniel, D. N. Maywar, and G. P. Agrawal, “Dynamic mode theory of optical resonators undergoing refractive index changes,” J. Opt. Soc. Am. B 28, 2207–2215 (2011). [CrossRef]
  18. F. A. Hopf, P. Meystre, P. D. Drummond, and D. F. Walls, “Anomalous switching in dispersive optical bistability,” Opt. Commun. 31, 245–250 (1979). [CrossRef]
  19. F. A. Hopf and P. Meystre, “Phase-switching of a dispersive non-linear interferometer,” Opt. Commun. 33, 225–230(1980). [CrossRef]
  20. H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Numerical study of impulsive switching of bistable states in nonlinear etalons,” IEEE Photon. Technol. Lett. 19, 913–915 (2007). [CrossRef]
  21. S. Sandhu, M. L. Povinelli, and S. Fan, “Enhancing optical switching with coherent control,” Appl. Phys. Lett. 96, 231108 (2010). [CrossRef]
  22. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  23. M. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19, 13551–13556 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited