OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2297–2308

Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials

Ali Panahpour, Yaser Silani, Marzieh Farrokhian, Andrei V. Lavrinenko, and Hamid Latifi  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2297-2308 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Classical analogues of the well-known effect of electromagnetically induced transparency (EIT) in quantum optics have been the subject of considerable research in recent years from microwave to optical frequencies, because of their potential applications in slow light devices, studying nonlinear effects in low-loss nanostructures, and development of low-loss metamaterials. A large variety of plasmonic structures has been proposed for producing classical EIT-like effects in different spectral ranges. The current approach for producing plasmon-induced transparency is usually based on precise design of plasmonic “molecules,” which can provide specific interacting dark and bright plasmonic modes with Fano-type resonance couplings. In this paper, we show that classical interactions of coupled plasmonic and excitonic spherical nanoparticles (NPs) can result in much more effective transparency and slow light effects in metamaterials composed of such coupled NPs. To reveal more details of the wave-particle and particle-particle interactions, the electric field distribution and field lines of Poynting vector inside and around the NPs are calculated using the finite element method. Finally, using extended Maxwell Garnett theory, we study the coupled-NP-induced transparency and slow light effects in a metamaterial comprising random mixture of silver and copper chloride (CuCl) NPs, and more effectively in a metamaterial consisting of random distribution of coated NPs with CuCl cores and aluminum shells in the UV region.

© 2012 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(290.4020) Scattering : Mie theory
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: February 22, 2012
Revised Manuscript: June 30, 2012
Manuscript Accepted: July 7, 2012
Published: August 3, 2012

Ali Panahpour, Yaser Silani, Marzieh Farrokhian, Andrei V. Lavrinenko, and Hamid Latifi, "Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials," J. Opt. Soc. Am. B 29, 2297-2308 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004). [CrossRef]
  2. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008). [CrossRef]
  3. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011). [CrossRef]
  4. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006). [CrossRef]
  5. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef]
  6. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008). [CrossRef]
  7. S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009). [CrossRef]
  8. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011). [CrossRef]
  9. V. Yannopapas, and N. V. Vitanov, “Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength,” Phys. Rev. B 74, 193304 (2006). [CrossRef]
  10. V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Stat. Sol. (RRL) 1, 208–210 (2007). [CrossRef]
  11. A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpanet, “Optically isotropic negative index of refraction metamaterial,” Phys. Stat. Sol. (b) 245, 992–997 (2008). [CrossRef]
  12. V. Agranovich and V. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, 2nd ed. (Springer, 1984).
  13. S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003). [CrossRef]
  14. M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005). [CrossRef]
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  16. A. Panahpour and H. Latifi, “Electromagnetic transparency and slow light in an isotropic 3D optical metamaterial, due to Fano-like coupling of Mie resonances in excitonic nano-sphere inclusions,” Opt. Commun. 284, 1701–1710 (2011). [CrossRef]
  17. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16, 1186–1195 (2008). [CrossRef]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  19. U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974). [CrossRef]
  20. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10876 (2004). [CrossRef]
  21. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef]
  23. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009).. [CrossRef]
  24. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009). [CrossRef]
  25. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef]
  26. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009). [CrossRef]
  27. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006). [CrossRef]
  28. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13, 8372–8379 (2005). [CrossRef]
  29. A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1, 393–415 (2000). [CrossRef]
  30. Q. Wang, D. Tiana, G. Xionga, and Z. Zhoua, “A simplified model for the dielectric function of three-component composite materials,” Physica A 275, 256–261 (2000). [CrossRef]
  31. P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005). [CrossRef]
  32. C. F. Bohren and N. C. Wickramasinghe, “On the computation of optical properties of heterogeneous grains,” Astrophys. Space Sci. 50, 461–472 (1977). [CrossRef]
  33. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989). [CrossRef]
  34. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  35. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical—cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  36. M. I. Markovic and A. D. Rakic, “Determination of reflection coefficients of laser light of Wavelength λ∈(0.22  μm,200  μm) from the surface of aluminum using the Lorentz-Drude model,” Appl. Opt. 29, 3479–3483 (1990). [CrossRef]
  37. M. I. Markovic and A. D. Rakic, “Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude model,” Opt. Laser Technol. 22, 394–398 (1990). [CrossRef]
  38. P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D 40, R93–R107 (2007). [CrossRef]
  39. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011). [CrossRef]
  40. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef]
  41. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited