OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2314–2319

Design of all-optical switching component based on pillar-array hybrid nonlinear photonic crystal cavity

Fei Qin, Zi-Ming Meng, and Zhi-Yuan Li  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2314-2319 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Kerr-effect sensitive microcavity device based on the two-dimensional pillar-array hybrid nonlinear photonic crystal slab has been designed for all-optical switching. The cavity is made from infiltrating the void space of the pillar-array semiconductor photonic crystal slab with polystyrene. The structure parameters have been optimized by numerical simulations based on the three-dimensioanl finite-difference time-domain method. It is found that the resonant wavelength can shift 15 nm under the pump light with an intensity of 80GW/cm2, which is far larger than the shift magnitude of the holes-array nonlinear photonic crystal slab.

© 2012 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(140.3945) Lasers and laser optics : Microcavities
(130.4815) Integrated optics : Optical switching devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: April 9, 2012
Revised Manuscript: June 5, 2012
Manuscript Accepted: July 5, 2012
Published: August 6, 2012

Fei Qin, Zi-Ming Meng, and Zhi-Yuan Li, "Design of all-optical switching component based on pillar-array hybrid nonlinear photonic crystal cavity," J. Opt. Soc. Am. B 29, 2314-2319 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995). [CrossRef]
  2. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992). [CrossRef]
  3. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004). [CrossRef]
  4. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13, 7298–7303 (2005). [CrossRef]
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004). [CrossRef]
  6. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997). [CrossRef]
  7. M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. B: At.Mol. Opt. Phys. 41, 015401 (2008). [CrossRef]
  8. F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, “All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect,” Opt. Lett. 30, 2254–2256 (2005). [CrossRef]
  9. M. Scalora, J. P. Dowling, and C. M. Bowden, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef]
  10. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004). [CrossRef]
  11. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  12. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008). [CrossRef]
  13. J. D. Cox, J. Sabarinathan, and M. R. Singh, “Resonant photonic states in coupled heterostructure photonic crystal waveguides,” Nanoscale Res. Lett. 5, 741–746 (2010). [CrossRef]
  14. J. D. Cox and M. R. Singh, “Energy splitting of resonant photonic states in nonlinear nanophotonic double waveguides,” J. Appl. Phys. 108, 083102 (2010). [CrossRef]
  15. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  16. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007). [CrossRef]
  17. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005). [CrossRef]
  18. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007). [CrossRef]
  19. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006). [CrossRef]
  20. W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004). [CrossRef]
  21. T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008). [CrossRef]
  22. T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009). [CrossRef]
  23. W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20, 41–45 (2009). [CrossRef]
  24. G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997). [CrossRef]
  25. D. Mascoli, D. Gerace, and L. C. Andreani, “Q-factor optimization for TM-like modes in pillar-based photonic crystal cavities with planar slot waveguides,” Photon. Nanostruct. Fundam. Applic. 9, 63–69 (2011). [CrossRef]
  26. F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12, 035209 (2010). [CrossRef]
  27. F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010). [CrossRef]
  28. Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009). [CrossRef]
  29. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017–2019 (1996). [CrossRef]
  30. http://ab-initio.mit.edu/wiki/index.php/Meep .
  31. T. Xu, S. X. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations,” Phys. Rev. B 75, 125104 (2007). [CrossRef]
  32. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Academic, 2008).
  33. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  34. M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84, 4298–4300 (2004). [CrossRef]
  35. E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–5073 (2005). [CrossRef]
  36. S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003). [CrossRef]
  37. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited