OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2446–2452

Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths

Tavakol Pakizeh  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2446-2452 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002446


View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical radiation of a magnetic dipole coupled to a plasmonic nanoantenna composed of stacked gold nanodisks is investigated. The nanoantenna is fed by a point magnetic dipole properly situated between two nanodisks. It is found that the magnetic dipole efficiently couples to the antenna due to the excitation of an antiphase localized surface plasmon resonance mode. This leads to a remarkable enhancement of the optical radiation at the resonant wavelength associated with the hybridized mode of the nanoantenna. By introducing a slight structural asymmetry in the nanoantenna, the optical radiation is substantially altered. Interestingly, it is shown that the omnidirectional radiation of the magnetic dipole becomes almost unidirectional, further enhanced, and accessible in three-dimensions by the asymmetric nanoantenna. Based on the classical model, quasistatic theory, and electrodynamics calculations, the electromagnetic interaction of the magnetic dipole and the nanoantennas is studied. A remarkable forward-to-backward directionality is achieved by the proposed nanoantenna at visible wavelengths.

© 2012 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(230.3120) Optical devices : Integrated optics devices
(260.2110) Physical optics : Electromagnetic optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 9, 2012
Revised Manuscript: June 10, 2012
Manuscript Accepted: July 9, 2012
Published: August 22, 2012

Citation
Tavakol Pakizeh, "Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths," J. Opt. Soc. Am. B 29, 2446-2452 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]
  2. L. Novotny, “Optical antennas tuned to pitch,” Nature 455, 887 (2008). [CrossRef]
  3. J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005). [CrossRef]
  4. C. A. Balanis, Antenna Theory: Analysis and Design3rd ed. (Wiley, 2005).
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  6. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichel, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008). [CrossRef]
  7. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectra properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008). [CrossRef]
  8. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007). [CrossRef]
  9. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  10. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  11. T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009). [CrossRef]
  12. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]
  13. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007). [CrossRef]
  14. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008). [CrossRef]
  15. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008). [CrossRef]
  16. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011). [CrossRef]
  17. J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007). [CrossRef]
  18. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009). [CrossRef]
  19. G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano 6, 1438–1448 (2012). [CrossRef]
  20. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008). [CrossRef]
  21. D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun. 2, 267 (2011). [CrossRef]
  22. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef]
  23. S. H. Alavi Lavasani and T. Pakizeh, “Color-switched directional ultracompact optical nanoantennas,” J. Opt. Soc. Am. B 29, 1361–1366, (2012). [CrossRef]
  24. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25, 659–667 (2008). [CrossRef]
  25. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11, 1009–1013 (2011). [CrossRef]
  26. C. M. Soukoulis, S. Linden, and M. Wegner, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). [CrossRef]
  27. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007). [CrossRef]
  28. A. Alu and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009). [CrossRef]
  29. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097–1105(2006). [CrossRef]
  30. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007). [CrossRef]
  31. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  32. L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  33. C. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  34. D. M. Sullivan, Electromagnetic Simulation Using FDTD Method (IEEE, 2000).
  35. B. T. Draine and P. J. Flatau, “Disceret-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  36. R. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited