OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2484–2492

Design methodology for efficient frequency conversion in Bragg reflection lasers

Bhavin J. Bijlani and Amr S. Helmy  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2484-2492 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002484


View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bragg reflection waveguides are shown to be structures that can enable the integration of a laser and optically nonlinear medium within the same cavity for efficient frequency conversion. An effective and simple method of designing phase-matched laser structures utilizing transfer matrix analysis is described. The structures are first optimized in terms of laser performance and then for enhancement of χ(2) nonlinearity. The method for optimization shows that designing for either optimum laser performance or optimum nonlinear performance can conflict. An efficiency term encompassing the requirements of both the laser and nonlinear element is derived. This serves as a figure of merit that includes parameters relevant to both the laser and the nonlinear device. It is then utilized to optimize the structure for efficient parametric conversion. This figure of merit is extended to examine parametric oscillation in the laser cavity for both singly resonant and doubly resonant configurations. It is found that threshold values of 4 W in a practical device can be obtained. Such power levels are easily obtained by mode locking the pump laser. With reduced propagation loss through etch and design improvement, sub-Watt thresholds can be realized.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.2020) Lasers and laser optics : Diode lasers
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.1480) Optical devices : Bragg reflectors
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optical Devices

History
Original Manuscript: April 17, 2012
Revised Manuscript: July 1, 2012
Manuscript Accepted: July 9, 2012
Published: August 23, 2012

Citation
Bhavin J. Bijlani and Amr S. Helmy, "Design methodology for efficient frequency conversion in Bragg reflection lasers," J. Opt. Soc. Am. B 29, 2484-2492 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Khurgin, E. Rosencher, and Y. J. Ding, “Analysis of all-semiconductor intracavity optical parametric oscillators,” J. Opt. Soc. Am. B 15, 1726–1730 (1998). [CrossRef]
  2. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007). [CrossRef]
  3. A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011). [CrossRef]
  4. A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001). [CrossRef]
  5. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006). [CrossRef]
  6. J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27, 1291–1298 (2010). [CrossRef]
  7. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009). [CrossRef]
  8. J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009). [CrossRef]
  9. J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010). [CrossRef]
  10. Y. Li, Y. Xi, X. Li, and W. Huang, “A single-mode laser based on asymmetric Bragg reflection waveguides,” Opt. Express 17, 11179–11186 (2009). [CrossRef]
  11. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009). [CrossRef]
  12. Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004). [CrossRef]
  13. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001). [CrossRef]
  14. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976). [CrossRef]
  15. P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009). [CrossRef]
  16. T. Cunzhu, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
  17. B. R. West and A. S. Helmy, “Properties of the quarter-wave Bragg reflection waveguide: theory,” J. Opt. Soc. Am. B 23, 1207–1220 (2006). [CrossRef]
  18. J. Li and K. S. Chiang, “Guided modes of one-dimensional photonic bandgap waveguides,” J. Opt. Soc. Am. B 24, 1942–1950 (2007). [CrossRef]
  19. J. Chilwell and I. Hodgkinson, “Thin-film field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753(1984). [CrossRef]
  20. H. C. Casey and M. B. Panish, Heterostructure Lasers (Elsevier, 1978).
  21. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000). [CrossRef]
  22. G. Aers, “Institute for Microstructural Sciences: National Research Council of Canada (NRC),” http://www.nrc-cnrc.gc.ca/eng/ibp/ims.html .
  23. S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: An accurate matrix method formulation,” Opt. Commun. 279, 83–88 (2007). [CrossRef]
  24. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer2003).
  25. M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993). [CrossRef]
  26. C. M. Kim, B. G. Jung, and C. W. Lee, “Analysis of dielectric rectangular waveguide by modified effective-index method,” Electron. Lett. 22, 296–298 (1986).
  27. P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012). [CrossRef]
  28. B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008). [CrossRef]
  29. B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006). [CrossRef]
  30. J. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415(1995). [CrossRef]
  31. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000). [CrossRef]
  32. P. Abolghasem, M. Hendrych, X. J. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009). [CrossRef]
  33. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited