OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2554–2558

Soliton dynamics induced by periodic spatially inhomogeneous losses in optical media described by the complex Ginzburg–Landau model

Yingji He and Dumitru Mihalache  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2554-2558 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002554


View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the rich dynamics of dissipative spatial solitons in optical media described by the complex Ginzburg–Landau equation in the presence of periodic, sinusoidal-type spatially inhomogeneous losses. It is revealed that in the case when the soliton is launched at the point where the periodic spatial modulation loss profile has its zero value, the gradient force of the inhomogeneous loss easily induces three generic propagation scenarios: (a) soliton transverse drift, (b) persistent swing around the soliton input launching position, and (c) damped oscillations near or even far from the input position. The soliton exhibiting damped oscillations eventually evolves into a stable one, whose output position can be controlled by the amplitude of the inhomogeneous loss profile. Conversely, when the launching point coincides with an extremum (a maximum or a minimum) of the sinusoidal-type loss landscape, both soliton transverse drift and soliton damped oscillations occur due to transverse modulation instability. Moreover, in this case, depending on the balance between the amplitude of the inhomogeneous loss modulation profile and the homogeneous linear loss coefficient, either the launched soliton can maintain its stable propagation at the input position or a stable plump dissipative soliton can be formed while preserving the launching point.

© 2012 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 29, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 6, 2012
Published: August 29, 2012

Citation
Yingji He and Dumitru Mihalache, "Soliton dynamics induced by periodic spatially inhomogeneous losses in optical media described by the complex Ginzburg–Landau model," J. Opt. Soc. Am. B 29, 2554-2558 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2554


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Spec. Topics 173, 233–243 (2009). [CrossRef]
  2. D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36, 1200–1202 (2011). [CrossRef]
  3. Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010). [CrossRef]
  4. Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83, 041806(R) (2011). [CrossRef]
  5. V. E. Lobanov, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Stable radially symmetric and azimuthally modulated vortex solitons supported by localized gain,” Opt. Lett. 36, 85–87 (2011). [CrossRef]
  6. O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner, “Vortex twins and anti-twins supported by multi-ring gain landscapes,” Opt. Lett. 36, 3783–3785(2011). [CrossRef]
  7. O. V. Borovkova, V. E. Lobanov, Y. V. Kartashov, and L. Torner, “Rotating vortex solitons supported by localized gain,” Opt. Lett. 36, 1936–1938 (2011). [CrossRef]
  8. O. V. Borovkova, Y. V. Kartashov, V. A. Vysloukh, V. E. Lobanov, B. A. Malomed, and L. Torner, “Solitons supported by spatially inhomogeneous nonlinear losses,” Opt. Express 20, 2657–2667 (2012). [CrossRef]
  9. Y. V. Bludov and V. V. Konotop, “Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices,” Phys. Rev. A 81, 013625 (2010). [CrossRef]
  10. V. Skarka, N. B. Aleksic, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010). [CrossRef]
  11. N. N. Rosanov, Spatial Hysteresis and Optical Patterns(Springer, 2002).
  12. Z. Bakonyi, D. Michaelis, U. Peschel, G. Onishchukov, and F. Lederer, “Dissipative solitons and their critical slowing down near a supercritical bifurcation,” J. Opt. Soc. Am. B 19, 487–491 (2002). [CrossRef]
  13. B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A. Scott, ed., pp. 157–160 (Routledge, 2005).
  14. B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007). [CrossRef]
  15. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: from Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008).
  16. F. T. Arecchi, S. Boccaletti, and P. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999). [CrossRef]
  17. P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B: Quantum Semiclass. Opt. 6, R60–R75 (2004). [CrossRef]
  18. N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005). [CrossRef]
  19. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996). [CrossRef]
  20. L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg–Landau equation,” Phys. Rev. E 63, 016605 (2000). [CrossRef]
  21. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  22. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005).
  23. Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009). [CrossRef]
  24. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006). [CrossRef]
  25. H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A Pure Appl. Opt. 8, 319–326 (2006). [CrossRef]
  26. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007). [CrossRef]
  27. J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortes, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009). [CrossRef]
  28. W. Chang, N. Akhmediev, S. Wabnitz, and M. Taki, “Influence of external phase and gain-loss modulation on bound solitons in laser systems,” J. Opt. Soc. Am. B 26, 2204–2210 (2009). [CrossRef]
  29. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012). [CrossRef]
  30. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003). [CrossRef]
  31. L. Gil, K. Emilsson, and G.-L. Oppo, “Dynamics of spiral waves in a spatially inhomogeneous Hopf bifurcation,” Phys. Rev. A 45, R567 (1992). [CrossRef]
  32. I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143(2002). [CrossRef]
  33. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E 63, 056602 (2001). [CrossRef]
  34. V. V. Afanasjev, N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localized solutions of the quintic complex Ginzburg–Landau equation,” Phys. Rev. E 53, 1931–1939 (1996). [CrossRef]
  35. Y. J. He, B. A. Malomed, F. W. Ye, and B. B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010). [CrossRef]
  36. B. Kneer, T. Wong, K. Vogel, W. P. Schleich, and D. F. Walls, “Generic model of an atom laser,” Phys. Rev. A 58, 4841–4853 (1998). [CrossRef]
  37. F. T. Arecchi, J. Bragard, and L. M. Castellano, in Bose-Einstein Condensates and Atom Lasers (Kluwer, 2002).
  38. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclass. Opt. 7, R53–R72 (2005). [CrossRef]
  39. D. Mihalache, “Three-dimensional Ginzburg-Landau dissipative solitons supported by a two-dimensional transverse grating,” Proc. Rom. Acad. A 11, 142–147 (2010).
  40. D. Mihalache, “Topological dissipative nonlinear modes in two- and three-dimensional Ginzburg–Landau models with trapping potentials,” Rom. Rep. Phys. 63, 9–24 (2011).
  41. D. Mihalache and D. Mazilu, “Ginzburg–Landau spatiotemporal dissipative optical solitons,” Rom. Rep. Phys. 60, 749–761 (2008).
  42. D. Mihalache, “Linear and nonlinear light bullets: recent theoretical and experimental studies,” Rom. J. Phys. 57, 352–371 (2012).
  43. O. V. Borovkova, V. E. Lobanov, Y. V. Kartashov, and L. Torner, “Stable vortex-soliton tori with multiple nested phase singularities in dissipative media,” Phys. Rev. A 85, 023814 (2012). [CrossRef]
  44. V. E. Lobanov, O. V. Borovkova, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Topological light bullets supported by spatiotemporal gain,” Phys. Rev. A 85, 023804 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited