OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2575–2580

Analytical design of quasi-closed subwavelength electromagnetic rectangular resonators using stacks of dielectric–plasmonic bilayers

Guanghao Zhu  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2575-2580 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that quasi-closed subwavelength electromagnetic rectangular resonators can be constructed using stacked dielectric-plasmonic bilayer structures, in an analogy to the dielectric resonators formed by materials with large permittivity commonly seen in microwave engineering. We establish an analytic framework for designing such subwavelength resonators by providing formulas for calculating the resonant frequency and the radiation/material loss Q-factors of the fundamental mode. The provided analytic formulas yield accurate results when compared with the numerical simulations for a broad range of design parameter sets. The proposed stack resonator in principle can be made arbitrarily small and, in the absence of material loss, can have Q-factors larger than 105.

© 2012 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: June 19, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 6, 2012
Published: August 30, 2012

Guanghao Zhu, "Analytical design of quasi-closed subwavelength electromagnetic rectangular resonators using stacks of dielectric–plasmonic bilayers," J. Opt. Soc. Am. B 29, 2575-2580 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  2. L. Novotny and B. Hecht, Principle of NanoOoptics (Cambridge University, 2006).
  3. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of negative refraction,” Science 292, 77–79 (2001). [CrossRef]
  6. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef]
  7. N. M. Litchinitser and V. M. Shalaev, “Metamaterials: transforming theory into reality,” J. Opt. Soc. Am. B 26, B161–B169 (2009). [CrossRef]
  8. W. Cai, and V. M. Shalaev, Optical Metamaterials (Springer, 2010).
  9. N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterial with negative permittivity and permeability,” IEEE Antennas Wireless Propagat. Lett. 1, 10–13 (2002). [CrossRef]
  10. Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one-dimensional LHM–RHM resonator,” IEEE Trans. Microwave Theory Tech. 53, 1522–1526 (2005). [CrossRef]
  11. T. Jiang, Y. Chen, and Y. Feng, “Subwavelength rectangular cavity partially filled with left-handed material,” Chin. Phys. 15, 1154–1160 (2006). [CrossRef]
  12. S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005). [CrossRef]
  13. H. Li, J. Hao, L. Zhou, Z. Wei, L. Gong, H. Chen, and C. T. Chan, “All-dimensional subwavelength cavities made with metamaterials,” Appl. Phys. Lett. 89, 104101 (2006). [CrossRef]
  14. H. Caglayan, I. Bulu, M. Loncar, and E. Ozbay, “Experimental observation of subwavelength localization using metamaterial-based cavities,” Opt. Lett. 34, 88–90 (2009). [CrossRef]
  15. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  16. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2000). [CrossRef]
  17. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007). [CrossRef]
  18. Y. Gong and J. Vuckovic, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90, 033113 (2007). [CrossRef]
  19. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008). [CrossRef]
  20. R. M. Gelfand, L. Bruderer, and H. Mohseni, “Nanocavity plasmonic device for ultra-broadband single molecule sensing,” Opt. Lett. 34, 1087–1089 (2009). [CrossRef]
  21. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609 (2009). [CrossRef]
  22. A. Pors, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27, 1680–1687 (2010). [CrossRef]
  23. J. Petschulat, C. Helgert, M. Steinert, N. Bergner, C. Rockstuhl, F. Lederer, T. Pertsch, A. Tünnermann, and E. B. Kley, “Plasmonic modes of extreme subwavelength nanocavities,” Opt. Lett. 35, 2693–2695 (2010). [CrossRef]
  24. M. K. Kim, S. H. Lee, M. Choi, B. H. Ahn, N. Park, Y. H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18, 11089–11096 (2010). [CrossRef]
  25. H. S. Chu, Y. A. Akimov, P. Bai, and E. P. Li, “Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale,” J. Opt. Soc. Am. B 28, 2895–2901 (2011). [CrossRef]
  26. I. Bulu, T. Babinec, B. Hausmann, J. T. Choy, and M. Loncar, “Plasmonic resonators for enhanced diamond NV-center single photon sources,” Opt. Express 19, 5268–5276 (2011). [CrossRef]
  27. J. H. Kang, Y. S. No, S. H. Kwon, and H. G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett. 36, 2011–2013 (2011). [CrossRef]
  28. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20, 3408–3423 (2012). [CrossRef]
  29. Y. W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y. F. Chau, N. I. Zheludev, and D. P. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20, 1760–1768 (2012). [CrossRef]
  30. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. USA 108, 11327–11331 (2011).
  31. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photon. 6, 450–454 (2012). [CrossRef]
  32. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  33. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef]
  34. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B 23, 498–505 (2006). [CrossRef]
  35. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials,” Science 321, 930 (2008). [CrossRef]
  36. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited