OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2588–2594

Vectorial mechanism of nonlinearity enhancement in rubidium vapor

Nikolai Korneev and Chrystian Gutiérrez Parra  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2588-2594 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002588


View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the calculations of vectorial nonlinear properties of rubidium vapor for Rb87D2 transition at moderate intensities. The results are compared with self-rotation and diffraction experiments. Different from Kerr nonlinearity, optimal intensity exists here, which depends on beam geometry. For intensities close to the optimal, the vectorial mechanism is much more efficient than a scalar one, and strong self-action for wide beams can be obtained with it.

© 2012 Optical Society of America

OCIS Codes
(190.5940) Nonlinear optics : Self-action effects
(190.2055) Nonlinear optics : Dynamic gratings
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 18, 2012
Revised Manuscript: July 21, 2012
Manuscript Accepted: July 27, 2012
Published: August 31, 2012

Citation
Nikolai Korneev and Chrystian Gutiérrez Parra, "Vectorial mechanism of nonlinearity enhancement in rubidium vapor," J. Opt. Soc. Am. B 29, 2588-2594 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Zerom and R. W. Boyd, “Self-focusing, conical emission, and other self-action effects in atomic vapors,” in Self-focusing: Past and Present, Vol. 114 of Topics in Applied Physics, R. W. Boyd, S. G. Lukishova, and Y. R. Shen, eds., (Springer Science+Business Media, 2009), pp. 231–251.
  2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991).
  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  4. E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1996), Vol. 35, pp. 257–354.
  5. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002). [CrossRef]
  6. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium Vapor,” Science 308, 672–674 (2005). [CrossRef]
  7. E. E. Mikhailov, A. Lezama, T. W. Noel, and I. Novikova, “Vacuum squeezing via polarization self-rotation and excess noise in hot Rb vapors,” J. Mod. Opt. 56, 1985–1992 (2009). [CrossRef]
  8. I. H. Agha, G. Messin, and P. Grangier, “Generation of pulsed and continuos-wave squeezed light with (87)Rb vapor,” Opt. Express 18, 4198–4205 (2010). [CrossRef]
  9. C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011). [CrossRef]
  10. N. Ram, M. Pattabiraman, and C. Vijayan, “Low field Zeeman magnetometry using rubidium absorption spectroscopy,” J. Phys. Conf. Ser. 80, 012035 (2007). [CrossRef]
  11. R. Zhang, J. A. Greenberg, M. C. Fischer, and D. J. Gauthier, “Controllable ultrabroadband slow light in a warm rubidium vapor,” J. Opt. Soc. Am. B 28, 2578–2583 (2011). [CrossRef]
  12. S. R. Shin, and H.-R. Noh, “Doppler spectroscopy of arbitrarily polarized light in rubidium,” Opt. Commun. 284, 1243–1246 (2011). [CrossRef]
  13. S. Mitra, M. M. Hossain, P. Poddar, C. Chaudhuri, B. Ray, and P. N. Ghosh, “Standing wave pump field induced coherent non-linear resonances in rubidium vapor,” Chem. Phys. Lett. 513, 173–178 (2011). [CrossRef]
  14. G. Moon and H. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701–711 (2008). [CrossRef]
  15. N. Korneev and O. Benavides, “Mechanisms of holographic recording in rubidium vapor close to resonance,” J. Opt. Soc. Am. B 25, 1899–1906 (2008). [CrossRef]
  16. N. Korneev and O. Benavides, “Direct multi-level density matrix calculation of nonlinear optical rotation spectra in rubidium vapour,” J. Mod. Opt. 56, 1194–1198 (2009). [CrossRef]
  17. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge, 2004).
  18. G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches (Springer Verlag, 1974).
  19. K. Mølmer, Y. Castin, and J. Dalibard, “Monte Carlo wave-function method in quantum optics,” J. Opt. Soc. Am. B 10, 524–538 (1993). [CrossRef]
  20. J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68, 025801 (2003). [CrossRef]
  21. E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33, 1213–1215 (2008). [CrossRef]
  22. N. Korneev, “Nonlinearity enhancement in rubidium vapour with vectorial mechanism,” Proc. SPIE 8011, 801137 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited