OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2595–2602

Dark-field hyperlens exploiting a planar fan of tips

Henri Benisty and François Goudail  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2595-2602 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metallo-dielectric superlenses transfer subwavelength-scale information without magnification. The so-called hyperlenses additionally magnify, transferring images into traditional far-field optics. We target hyperlenses based on the “canalization” phenomenon in an array of wires, modified to form an open fan, also called “endoscope.” We use an integrated optics design with silicon wires, fed for instance by grating couplers, accessing gold wire fans. This alleviates the need to care for wire length. We explore a regime where we do not only image a near-field source, but where we image illuminated nano-objects, as done in microscopy, light being fed by a second fan before the object plane. In order to counter the low contrast from illuminated nano-objects, we propose here a dark-field hyperlens concept: We show that the illumination fan can be fed so as to get a dark output for a “void” object field, as occurs in the eponym microscopy method. We obtain, at a wavelength as large as 1200 nm, a well-resolved imaging capability for a scene of two 30 nm silicon particles.

© 2012 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.3170) Microscopy : Interference microscopy
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: June 19, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 27, 2012
Published: August 30, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Henri Benisty and François Goudail, "Dark-field hyperlens exploiting a planar fan of tips," J. Opt. Soc. Am. B 29, 2595-2602 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  4. Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef]
  5. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007). [CrossRef]
  6. M. G. Silveirinha, P. A. Belov, and C. R. Simosvski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008). [CrossRef]
  7. A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011). [CrossRef]
  8. A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009). [CrossRef]
  9. A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010). [CrossRef]
  10. A. Rahman, P. A. Belov, and Y. Hao, “Tailoring silver nanorod arrays for subwavelength imaging of arbitrary coherent sources,” Phys. Rev. B 82, 113408 (2010). [CrossRef]
  11. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005). [CrossRef]
  12. P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007). [CrossRef]
  13. P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008). [CrossRef]
  14. P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006). [CrossRef]
  15. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005). [CrossRef]
  16. P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006). [CrossRef]
  17. P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010). [CrossRef]
  18. P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73, 033108 (2006). [CrossRef]
  19. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006). [CrossRef]
  20. P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, “Enhancement of evanescent spatial harmonics inside of materials with extreme optical anisotropy,” Opt. Lett. 34, 527–529 (2009). [CrossRef]
  21. Y. Zhao, P. A. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” J. Opt. A: Pure Appl. Opt. 11, 075101 (2009). [CrossRef]
  22. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99, 053903 (2007). [CrossRef]
  23. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009). [CrossRef]
  24. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011). [CrossRef]
  25. V. Z. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005). [CrossRef]
  26. A. M. H. Wong and G. V. Eleftheriades, “Advances in imaging beyond the diffraction limit,” in Breakthroughs in Photonics 2011, IEEE Photon. J.4, 561–656 (2012). [CrossRef]
  27. M. W. Davidson, “Darkfield Illumination” (National High Magnetic Field Laboratory, 2012), retrieved micro.magnet.fsu.edu/primer/techniques/darkfield.html .
  28. F. V. Ignatovitch and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006). [CrossRef]
  29. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006). [CrossRef]
  30. F. Lemoult, M. Fink, and G. Lerosey, “Acoustic resonators for far-field control of sound on a subwavelength scale,” Phys. Rev. Lett. 107, 064301 (2011). [CrossRef]
  31. G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009). [CrossRef]
  32. H. Liu and K. J. Webb, “Resonance cones in cylindrically anisotropic metamaterials: a Green’s function analysis,” Opt. Lett. 36, 379–381 (2011). [CrossRef]
  33. H. Liu, Shivanand, and K. J. Webb, “Subwavelength imaging with nonmagnetic anisotropic bilayers,” Opt. Lett. 34, 2243–2245 (2009).
  34. L. Alekseyev, E. Narimanov, and J. Khurgin, “Super-resolution spatial frequency differentiation of nanoscale particles with a vibrating nanograting,” Appl. Phys. Lett. 100, 011101 (2012). [CrossRef]
  35. F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol. 27, 417–425 (2009). [CrossRef]
  36. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Tourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006). [CrossRef]
  37. T. Stomeo, F. Van Laere, M. Ayre, C. Cambournac, H. Benisty, D. Van Thourhout, R. Baets, and T. F. Krauss, “Integration of grating couplers with a compact photonic crystal demultiplexer on an InP membrane,” Opt. Lett. 33, 884–886 (2008). [CrossRef]
  38. R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009). [CrossRef]
  39. R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009). [CrossRef]
  40. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010). [CrossRef]
  41. R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011). [CrossRef]
  42. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35, 502–504 (2010). [CrossRef]
  43. A. Klekamp and R. Münzner, “Calculation of imaging errors of AWG,” J. Lightwave Technol. 21, 1978–1986 (2003). [CrossRef]
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  45. S. Huang, H. Wang, K.-H. Ding, and L. Tsang, “Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface,” Opt. Lett. 37, 1295–1297 (2012). [CrossRef]
  46. H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited