OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2630–2642

Competition between electronic Kerr and free-carrier effects in an ultimate-fast optically switched semiconductor microcavity

Emre Yüce, Georgios Ctistis, Julien Claudon, Emmanuel Dupuy, Klaus J. Boller, Jean-Michel Gérard, and Willem L. Vos  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2630-2642 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002630


View Full Text Article

Enhanced HTML    Acrobat PDF (948 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have performed ultrafast pump–probe experiments on a GaAs–AlAs microcavity with a resonance near 1300 nm in the “Original” telecom band. We concentrate on ultimate-fast optical switching of the cavity resonance that is measured as a function of pump-pulse energy. We observe that, at low pump-pulse energies, the switching of the cavity resonance is governed by the instantaneous electronic Kerr effect and is achieved within 300 fs. At high pump-pulse energies, the index change induced by free carriers generated in the GaAs start to compete with the electronic Kerr effect and reduce the resonance frequency shift. We have developed an analytic model that predicts this competition in agreement with the experimental data. To this end, we derive the nondegenerate two- and three-photon absorption coefficients for GaAs. Our model includes a new term in the intensity-dependent refractive index that considers the effect of the probe-pulse intensity, which is resonantly enhanced by the cavity. We calculate the effect of the resonantly enhanced probe light on the refractive index change induced by the electronic Kerr effect for cavities with different quality factors. By exploiting the linear regime where only the electronic Kerr effect is observed, we manage to retrieve the nondegenerate third-order nonlinear susceptibility χ ( 3 ) for GaAs from the cavity resonance shift as a function of pump-pulse energy.

© 2012 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(130.4815) Integrated optics : Optical switching devices
(200.6715) Optics in computing : Switching

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 1, 2012
Revised Manuscript: July 12, 2012
Manuscript Accepted: July 13, 2012
Published: August 31, 2012

Citation
Emre Yüce, Georgios Ctistis, Julien Claudon, Emmanuel Dupuy, Klaus J. Boller, Jean-Michel Gérard, and Willem L. Vos, "Competition between electronic Kerr and free-carrier effects in an ultimate-fast optically switched semiconductor microcavity," J. Opt. Soc. Am. B 29, 2630-2642 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2630


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  2. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljaĉić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007). [CrossRef]
  3. T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett. 107, 183903 (2011). [CrossRef]
  4. A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. İmamoğlu, “Strongly correlated photons on a chip,” Nat. Photon. 6, 93–96 (2012). [CrossRef]
  5. J. M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys. 90, 269–314 (2003). [CrossRef]
  6. J. P. Reithmaier, “Strong exciton-photon coupling in semiconductor quantum dot systems,” Semicond. Sci. Technol. 23, 123001 (2008). [CrossRef]
  7. P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002). [CrossRef]
  8. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef]
  9. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vuĉković, “Ultrafast photon–photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012). [CrossRef]
  10. G. Ctistis, E. Yüce, A. Hartsuiker, J. Claudon, M. Bazin, J. M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011). [CrossRef]
  11. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009). [CrossRef]
  12. P. J. Harding, H. J. Bakker, A. Hartsuiker, J. Claudon, A. P. Mosk, J. M. Gérard, and W. L. Vos, “Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs–AlAs microcavity,” J. Opt. Soc. Am. B 29, A1–A5 (2012). [CrossRef]
  13. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef]
  14. C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009). [CrossRef]
  15. E. Yüce, O. Gürlü, and A. Serpengüzel, “Optical modulation with silicon microspheres,” IEEE Photon. Technol. Lett. 21, 1481–1483 (2009). [CrossRef]
  16. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photon. 4, 477–483(2010). [CrossRef]
  17. J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–25 (1989). [CrossRef]
  18. T. Rivera, F. R. Ladan, A. Izraël, R. Azoulay, R. Kuszelewicz, and J. L. Oudar, “Reduced threshold all-optical bistability in etched quantum well microresonators,” Appl. Phys. Lett. 64, 869–872 (1994). [CrossRef]
  19. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jajali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004). [CrossRef]
  20. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006). [CrossRef]
  21. P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 26, 610–619 (2009). [CrossRef]
  22. T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump–probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009). [CrossRef]
  23. A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J. M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 083105 (2008). [CrossRef]
  24. G. Ctistis, A. Hartsuiker, E. van der Pol, J. Claudon, W. L. Vos, and J.-M. Gérard, “Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam,” Phys. Rev. B 82, 195330 (2010). [CrossRef]
  25. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuĉković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007). [CrossRef]
  26. P. J. Harding, T. G. Euser, Y. Nowicki-Bringuier, J. M. Gérard, and W. L. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007). [CrossRef]
  27. J. P. Mondia, H. W. Tan, S. Linden, and H. M. van Driel, “Ultrafast tuning of two-dimensional planar photonic-crystal waveguides via free-carrier injection and the optical Kerr effect,” J. Opt. Soc. Am. B 22, 2480–2486 (2005). [CrossRef]
  28. R. Boyd, Nonlinear Optics (Academic, 1992).
  29. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  30. D. C. Hutchings and E. W. van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9, 2065–2074 (1992). [CrossRef]
  31. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984). [CrossRef]
  32. C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. van Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B 50, 18073–18082 (1994). [CrossRef]
  33. C. Aversa and J. E. Sipe, “Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis,” Phys. Rev. B 52, 14636–14645 (1995). [CrossRef]
  34. P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306, 566–613 (1900). [CrossRef]
  35. P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 308, 369–402 (1900). [CrossRef]
  36. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University, 2007).
  37. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  38. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef]
  39. E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic interference of three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972). [CrossRef]
  40. B. S. Nair and S. Deepa, Solid State Devices (PHI Learning, 2010).
  41. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985). [CrossRef]
  42. C. Xu and W. W. Webb, “Nonlinear and two-photon-induced fluorescence,” in Topics in Fluoresence Spectroscopy (Plenum, 1997), p. 475.
  43. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited