OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 3, Iss. 10 — Oct. 1, 1986
  • pp: 1374–1389

High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications

J. P. Partanen and M. J. Shaw  »View Author Affiliations


JOSA B, Vol. 3, Issue 10, pp. 1374-1389 (1986)
http://dx.doi.org/10.1364/JOSAB.3.001374


View Full Text Article

Enhanced HTML    Acrobat PDF (2158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theory of forward Raman amplifiers is developed by considering both monochromatic and broadband pump waves. The effects of dispersion are studied. The cases of a small angle between pump and Stokes beams and multibeam pumping in a light guide are also treated. The growth of amplified spontaneous Raman scattering and higher-order Stokes and anti-Stokes components are considered. As a result of these studies, we conclude that a high-power forward Raman amplifier employing low-pressure gases in a light guide can be designed to operate efficiently with a stage gain of the order of 103. As an application, we present a design of a Raman amplifier that will be used as a beam combiner in an optical-multiplexer pulse-compression system for a high-power KrF laser. We also present some practical considerations that should be taken into account when this kind of system is designed.

© 1986 Optical Society of America

History
Original Manuscript: February 6, 1986
Manuscript Accepted: May 15, 1986
Published: October 1, 1986

Citation
J. P. Partanen and M. J. Shaw, "High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications," J. Opt. Soc. Am. B 3, 1374-1389 (1986)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-3-10-1374


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Kruer, “Laser-plasma coupling in reactor sized targets,” Comments Mod. Phys. E. 6, 167–175 (1981).
  2. C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982). [CrossRef]
  3. Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985). [CrossRef]
  4. F. Kannari, A. Suda, M. Obara, T. Fujioka, “Theoretical evaluation of electron-beam excited KrF lasers using argon-free mixtures of one atmosphere,” Appl. Phys. Lett. 45, 305–307 (1984). [CrossRef]
  5. M. Tanimoto, A. Yaoita, I. Okuda, Y. Owadano, “Efficient high power-density operation regime of KrF-laser amplifiers for fusion driver,” Jpn. J. Appl. Phys. 24, L311–L313 (1985). [CrossRef]
  6. M. J. Shaw, “The bi-directional amplifier in the constant intensity approximation and its application to KrF lasers,” Appl. Phys. B 30, 5–10 (1983). [CrossRef]
  7. S. Szatmari, F. P. Schafer, “Picosecond gain dynamics of KrF*,” Appl. Phys. B 33, 219–223 (1984). [CrossRef]
  8. G. W. York, S. J. Czuchlewski, L. A. Rosocha, E. T. Salesky, “Performance of the large aperture module of the Aurora KrF laser system,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), p. 188.
  9. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979). [CrossRef]
  10. J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979). [CrossRef]
  11. R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, N. Djeu, “Raman beam clean up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985). [CrossRef]
  12. N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979). [CrossRef]
  13. N. G. Basov, A. Z. Grasiuk, I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1981), pp. 819–827.
  14. L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963). [CrossRef]
  15. J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).
  16. M. J. Damzen, M. H. R. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. QE-19, 7–14 (1983). [CrossRef]
  17. R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985). [CrossRef]
  18. M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, F. O’Neill, “High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466–1475 (1986). [CrossRef]
  19. W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979). [CrossRef]
  20. Textbooks of nonlinear optics such as those by R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969) and Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  21. A. Penzkofer, A. Laubereau, W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979). [CrossRef]
  22. G. Placzek, “Rayleigh and Raman scattering,” in Handbuch der Radiologie, E. Marx ed. (Akademische Verlagsgesellschaft, Leipzig, 1934), p. 205.
  23. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 50–51.
  24. A. Z. Grasyuk, “Raman lasers (review),” Sov. J. Quantum Electron. 4, 269–282 (1974). [CrossRef]
  25. M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broad band lasers,” Phys. Rev. A 19, 2304–2316 (1979). [CrossRef]
  26. S. A. Akhmanov, Yu. E. Dyakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad band pump,” Sov. Phys. JETP 39, 249–256 (1975).
  27. J. Eggleston, R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850–853 (1980). [CrossRef]
  28. I. G. Zubarev, S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978). [CrossRef]
  29. G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).
  30. G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977). [CrossRef]
  31. M. G. Raymer, L. A. Westling, “Quantum theory of Stokes generation with a multimode laser,” J. Opt. Soc. Am. B 2, 1417–1421 (1985). [CrossRef]
  32. E. A. Stappaerts, W. H. Long, H. Komine, “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5, 4–6 (1980). [CrossRef] [PubMed]
  33. R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970). [CrossRef]
  34. C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969). [CrossRef]
  35. W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.
  36. J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982). [CrossRef]
  37. Landolt–Boernstein, Zahlenwarte und Functionen aus Physik, Chemie, Astronomie, Geophysik und Technik, II Band, 8. Teil. Optische Konstanten (Springer-Verlag, Berlin-Gottingen-Heidelberg, 1962).
  38. R. S. F. Chang, N. Djeu, “Amplification of a diffraction limited Stokes beam by a severely distorted pump,” Opt. Lett. 8, 139–141 (1983). [CrossRef] [PubMed]
  39. R. T. V. Kung, J. H. Hammond, “Phase front reproduction in Raman conversion,” IEEE J. Quantum Electron. QE-18, 1306–1310 (1982). [CrossRef]
  40. G. C. Valley, “Transfer of pump spatial variations to Stokes phase in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 1370–1375 (1982). [CrossRef]
  41. A. Owyoung, “High-resolution cw stimulated Raman spectroscopy in molecular hydrogen,” Opt. Lett. 2, 91–93 (1978). [CrossRef] [PubMed]
  42. J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972). [CrossRef]
  43. R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974). [CrossRef]
  44. W. K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  45. I. M. Thomas, J. G. Wilder, W. H. Lowdermilk, M. C. Staggs, “High damage threshold porous silica anti-reflective coating,” paper presented at the Annual Symposium on Laser Induced Damage in Optical Materials, Boulder, Colorado, October 1984.
  46. A. Z. Grasyuk, Yu. I. Karev, L. L. Losev, V. G. Smirnow, “Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by Nd laser radiation,” Sov. J. Quantum Electron. 10, 1542–1543 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited