OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 3, Iss. 4 — Apr. 1, 1986
  • pp: 614–621

Picosecond multiple-pulse experiments involving spatial and frequency gratings: a unifying nonperturbational approach

Koos Duppen and Douwe A. Wiersma  »View Author Affiliations


JOSA B, Vol. 3, Issue 4, pp. 614-621 (1986)
http://dx.doi.org/10.1364/JOSAB.3.000614


View Full Text Article

Acrobat PDF (939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concept of a grating in real and frequency space is examined in the context of a three-pulse optical excitation cycle applied to a pseudo two-level model system. The calculations are done analytically using the Liouville-operator formalism in matrix form. It is shown that a continuous transition occurs from a grating in real space to a grating in frequency space when the first two excitation pulses separate in time. During this transition, the role of the population-relaxation time constant (T1) is taken over by the dephasing time constant (T2) bringing out the irreversible nature of the loss of coherence in an excited state. The underlying space-time transformation when moving from a grating in real space to a grating in frequency space further clarifies the loss in symmetry of the scattering pattern induced by a probe pulse by attributing it to the law of causality. It is finally concluded that the generalized grating concept is a powerful means of analyzing or predicting the effects of multiple-pulse multicolor optical-coherence experiments.

© 1986 Optical Society of America

Citation
Koos Duppen and Douwe A. Wiersma, "Picosecond multiple-pulse experiments involving spatial and frequency gratings: a unifying nonperturbational approach," J. Opt. Soc. Am. B 3, 614-621 (1986)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-3-4-614


Sort:  Author  |  Journal  |  Reset

References

  1. I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. Lett. 13, 567 (1964); Phys. Rev. 41, 391 (1966).
  2. P. Ye and Y. R. Shen, Phys. Rev. A 25, 2183 (1982).
  3. K. Duppen, D. P. Weitekamp, and D. A. Wiersma, Chem. Phys. Lett. 106, 147 (1984); 108, 551 (1984).
  4. W. H. Hesselink and D. A. Wiersma, Phys. Rev. Lett. 43, 1991 (1979); J. Chem. Phys. 75, 4192 (1981).
  5. J. B. W. Morsink, W. H. Hesselink, and D. A. Wiersma, Chem. Phys. Lett. 64, 1 (1979).
  6. D. A. Wiersma, D. P. Weitekamp, and K. Duppen, in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984), p. 224.
  7. H. Eichler and H. Stahl, J. Appl. Phys. 44, 3429 (1973), and references therein.
  8. T. W. Mossberg, R. Kachru, S. R. Hartmann, and A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).
  9. M. D. Fayer, Ann. Rev. Phys. Chem. 33, 63 (1982).
  10. A. M. Weiner, S. De Silvestri, and E. P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985).
  11. S. De Silvestri, A. M. Weiner, J. G. Fujimoto, and E. P. Ippen, Chem. Phys. Lett. 112, 195 (1984).
  12. E. L. Hahn, Phys. Rev. 80, 580 (1950).
  13. For a recent discussion of this approximation, see Ph. de Bree, Ph.D. dissertation (University of Groningen, Groningen, The Netherlands, 1981).
  14. N. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37 (1964).
  15. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965), Chap. 2.
  16. R. L. Schoemaker, in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978).
  17. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).
  18. W. H. Hesselink, Ph.D. dissertation (University of Groningen, Groningen, The Netherlands, 1980).
  19. D. P. Weitekamp, K. Duppen, and D. A. Wiersma, Chem. Phys. Lett. 102, 139 (1983).
  20. Not the interaction picture. The connection between this rotating frame picture and the conventional interaction picture is ρ̃12 = exp[+i(ω21 − ω)t]ρ12INT and ρ̃21 = exp[−i(ω21 − ω)t]ρ21INT.
  21. E. Arimondo and G. Moruzzi, J. Phys. B 6, 2382 (1973).
  22. See, for instance, R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983), Chap. 2.
  23. U. Fano, Phys. Rev. 131, 259 (1963).
  24. E. J. Putzer, Am. Math. Monthly 73, 2 (1966).
  25. W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 73, 648 (1980).
  26. W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).
  27. In this definition, the decay of the amplitude of an optical FID is PFID(t) ~ exp(−t2/T2)exp(−t/2T22).
  28. M. M. Salour and C. Cohen-Tannoudji, Phys. Rev. Lett. 38, 757 (1977).
  29. In some published papers ρ11(t12+) was written for a situation in which population relaxation is negligible on the time scale of the pulse separation t12. This limitation was not always pointed out, however [e.g., K. Duppen, D. P. Weitzkamp, and D. A. Wiersma, Chem. Phys. Lett. 108, 551 (1984); K. Duppen, L. W. Molenkamp, and D. A. Wiersma, Physica 127B, 349 (1984)]. The correct, general, expression for ρ11 is ρ11(t12+) = ¼{2 − β exp(−k31t12 + β exp(−t12/T1) + cos θ1 × [β exp(−k31t12) − β exp(−t12/T1] + cos θ2 × [2 −β exp(−k31t12) + (β − 2)exp(−t12/T1)] + cos θ1 cosθ2[β exp(−k31t12) − (β − 2) × exp(−t12/T1)] − 2 sin θ1 sin θ2 × exp(−t12/T2) cos(Δt12 − k12 • r + ø12)]}.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited