OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 3, Iss. 4 — Apr. 1, 1986
  • pp: 622–627

Photon echoes induced by a phase-diffusing field: experimental evidence of a reversible behavior

Frangois Rohart  »View Author Affiliations

JOSA B, Vol. 3, Issue 4, pp. 622-627 (1986)

View Full Text Article

Acrobat PDF (872 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report quantitative measurements of the effects of a phase-diffusing field on coherent transients when the detected signals are averaged over many shots. Experiments were made at a millimeter wavelength, and frequency fluctuations were simulated by deliberately applying a well-defined random Stark field to the gaseous sample: This permits a separate adjustment of the amplitude and the rate of fluctuations. In the case of slow frequency fluctuations, two- and three-pulse-induced photon echoes clearly exhibit a reversible behavior that is closely related to the definite shape of the frequency-autocorrelation function.

© 1986 Optical Society of America

Frangois Rohart, "Photon echoes induced by a phase-diffusing field: experimental evidence of a reversible behavior," J. Opt. Soc. Am. B 3, 622-627 (1986)

Sort:  Author  |  Journal  |  Reset


  1. P. T. Greenland, J. Phys. B 17, 1919–1925 (1984); M. Helm and P. Zoller, Opt. Commun. 49, 324–328 (1984); B. W. Shore, J. Opt. Soc. Am. B 1, 176–188 (1984).
  2. P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, and M. D. Levenson, J. Phys. B 11, 1733–1747 (1978); B. R. Marx, J. Simons, and L. Allen, J. Phys. B 11, L273-L277 (1978); A. T. Georges and P. Lambropoulos, Phys. Rev. A 20, 991–1004 (1979).
  3. F. Rohart and B. Macke, Appl. Phys. B 26, 23–30 (1981).
  4. D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, Phys. Rev. Lett. 53, 439–441 (1984).
  5. B. Macke, J. Mol. Structure 97, 203–214 (1983); H. Dève, Thèse de 3ème Cycle (Universitè de Lille I, Lille, 1983; unpublished).
  6. F. Rohart, H. Dève, and B. Macke, Appl. Phys. B 39, 19–27 (1986).
  7. K. Wodkiewicz, Phys. Rev. A 19, 1686–1696 (1979).
  8. J. Rutman, Proc. IEEE 66, 1048–1075 (1978); Thèse d'Etat (Office National d'Etudes et de Recherches Aèrospatiales, Paris, 1972).
  9. Recent results obtained in transient spectroscopy with incoherent light may be found in, e.g., R. Beach and S. R. Hartmann, Phys. Rev. Lett. 53, 663–666 (1984); N. Morita and T. Yajima, Phys. Rev. A 30, 2525–2536 (1984).
  10. See, for example, J. Mostowski and K. Rzazewski, Z. Phys. B 39, 183–185 (1980), and references therein.
  11. E. Hanamura, J. Phys. Soc. Jpn. 52, 2258–2266, 3265–3274, 3678–3684 (1983).
  12. J. Javanainen, Opt. Commun. 50, 26–30 (1984); M. Yamanoi and J. H. Eberly Phys. Rev. Lett. 52, 1353 (1984); A. Schenzle, M. Mitsunaga, R. G. De Voe, and R. G. Brewer, Phys. Rev. A 30, 325–335 (1984); K. Wodkiewicz and J. H. Eberly, Phys. Rev. A 32, 992–1001 (1985); P. R. Berman and R. G. Brewer, Phys. Rev. A 32, 2784–2796 (1985).
  13. Similar problems were considered previously in magnetic resonance; see, for example, B. Herzog and E. L. Hahn, Phys. Rev. 103, 148–166 (1956); P. Hu and S. R. Hartmann, Phys. Rev. B 9, 1–13 (1974).
  14. R. G. De Voe, A. Szabo, S. C. Rand, and R. G. Brewer, Phys. Rev. Lett. 42, 1560–1563 (1979); R. M. Macfarlane, R. M. Shelby, and R. L. Shoemaker, Phys. Rev. Lett. 43, 1726–1730 (1979).
  15. R. G. De Voe and R. G. Brewer, Phys. Rev. Lett. 50, 1269–1272 (1983); analogous effects are also reported on a gaseous sample; see A. G. Yodh, J. Golub, N. W. Carlson, and T. W. Mossberg, 53, 659–662 (1984).
  16. R. L. Shoemaker, in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978), pp. 197–371; R. H. Schwendeman, Ann. Rev. Phys. Chem. 29, 537–558 (1978); T. W. Mossberg, R. Kachru, S. R. Hartmann, and A. M. Flusberg, Phys. Rev. A 20, 1976–1996 (1979).
  17. A. Szabo and M. Kroll, Opt. Lett. 2, 10–12 (1978).
  18. L. S. Cutler and C. L. Searle, Proc. IEEE 54, 136–154 (1966).
  19. A discussion more specific to steady-state experiments and their connection with the e.m.-field bandwidth can be found in Ref. 6.
  20. F. Rohart and B. Macke, Z. Naturforsch, 36a, 929–936 (1981).
  21. D. W. Allan, Proc. IEEE 54, 221–230 (1966).
  22. P. R. Berman, J. M. Levy, and R. G. Brewer, Phys. Rev. A11, 1668–1688 (1975).
  23. R. H. Dicke, Phys. Rev. 89, 472–473 (1953).
  24. H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630–638 (1954).
  25. F. Rohart, Thèse d'Etat (Université de Lille I, Lille, 1981; unpublished).
  26. Y. C. Chen, K. Chiang, and S. R. Hartmann, Opt. Commun. 29, 181–185 (1979); J. B. W. Morsink and D. A. Wiersma, Chem. Phys. Lett. 65, 105–108 (1979).
  27. P. R. Berman and R. G. Brewer, in Proceedings of 7th International Laser Spectroscopy Conference, T. W. Hänsen and Y. R. Shen, eds. (Springer-Verlag, Berlin, to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited