## Optimal symmetric quantum cloning machine with nonlinear optics |

JOSA B, Vol. 30, Issue 1, pp. 123-126 (2013)

http://dx.doi.org/10.1364/JOSAB.30.000123

Enhanced HTML Acrobat PDF (207 KB)

### Abstract

We propose a scheme to accomplish the optimal symmetric quantum cloning machine using a weak cross-Kerr nonlinearity effect without ancillary photons. Normal coherence probe beam and highly efficient homodyne detection are used to construct this near-deterministic equipment. Feed-forward and feed-backward processes are used to improve the efficiency of success. This device can be used for deterministic implementation of both northern and southern hemispheres optimal cloning transformation by adjusting some devices of the quantum circuit conveniently. The actual feasibility of this scheme with current experiment technology in theory is also discussed.

© 2012 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Nonlinear Optics

**History**

Original Manuscript: August 22, 2012

Manuscript Accepted: September 22, 2012

Published: December 12, 2012

**Citation**

Chun-Yan Li, Zu-Rong Zhang, Shi-Hai Sun, Mu-Sheng Jiang, and Lin-Mei Liang, "Optimal symmetric quantum cloning machine with nonlinear optics," J. Opt. Soc. Am. B **30**, 123-126 (2013)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-123

Sort: Year | Journal | Reset

### References

- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
- G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
- F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
- F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time-pad,” Phys. Rev. A 69, 052319 (2004). [CrossRef]
- F. G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004). [CrossRef]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
- W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
- D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92, 271–272 (1982). [CrossRef]
- L. M. Duan and G. C. Guo, “Probabilistic cloning and identification of linearly independent quantum states,” Phys. Rev. Lett. 80, 4999–5002 (1998). [CrossRef]
- V. Bužek and M. Hillery, “Quantum copying: beyond the no-cloning theorem,” Phys. Rev. A 54, 1844–1852 (1996). [CrossRef]
- R. F. Werner, “Optimal cloning of pure states,” Phys. Rev. A 58, 1827–1832 (1998). [CrossRef]
- J. Fiurášek, R. Filip, and N. J. Cerf, “Highly asymmetric quantum cloning in arbitrary dimension,” Quantum Inf. Comput. 5, 583–592 (2005).
- J. Fiurášek and N. J. Cerf, “Quantum cloning of a pair of orthogonally polarized photons with linear optics,” Phys. Rev. A 77, 052308 (2008). [CrossRef]
- J. Fiurášek, “Optical implementation of continuous-variable quantum cloning machines,” Phys. Rev. Lett. 86, 4942–4945 (2001). [CrossRef]
- H. K. Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, “Approximate quantum cloning with nuclear magnetic resonance,” Phys. Rev. Lett. 88, 187901 (2002). [CrossRef]
- A. L. Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002). [CrossRef]
- M. Sabuncu, G. Leuchs, and U. L. Andersen, “Experimental continuous-variable cloning of partial quantum information,” Phys. Rev. A 78, 052312 (2008). [CrossRef]
- Y. N. Wang, H. D. Shi, L. Jing, X. J. Ren, L. Z. Mu, and H. Fan, “Unified universal quantum cloning machine and fidelities,” Phys. Rev. A 84, 034302 (2011). [CrossRef]
- D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000). [CrossRef]
- H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001). [CrossRef]
- J. Fiurášek, “Optical implementations of the optimal phase-covariant quantum cloning machine,” Phys. Rev. A 67, 052314 (2003). [CrossRef]
- X. Y. Pan, G. Q. Liu, L. L. Yang, and H. Fan, “Solid-state optimal phase-covariant quantum cloning machine,” Appl. Phys. Lett. 99, 051113 (2011). [CrossRef]
- J. F. Du, T. Durt, P. Zou, H. Li, L. C. Kwek, C. H. Lai, C. H. Oh, and A. Ekert, “Experimental quantum cloning with prior partial information,” Phys. Rev. Lett. 94, 040505 (2005). [CrossRef]
- H. W. Chen, X. Y. Zhou, D. Suter, and J. F. Du, “Experimental realization of 1→2 asymmetric phase-covariant quantum cloning,” Phys. Rev. A 75, 012317 (2007). [CrossRef]
- C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, 1984), pp. 175–179.
- A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
- C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992). [CrossRef]
- F. Agnes and L. Norbert, “Symmetries in quantum key distribution and the connection between optimal attacks and optimal cloning,” Phys. Rev. A 85, 052310 (2012). [CrossRef]
- K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
- Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]
- S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
- X. G. Song, X. L. Feng, L. C. Kwek, and C. H. Oh, “Entanglement purification based on photonic polarization parity measurements,” J. Phys. B. At. Mol. Opt. Phys. 38, 2827–2832 (2005). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
- Y. B. Sheng, F. G. Deng, B. K. Zhao, T. J. Wang, and H. Y. Zhou, “Multipartite entanglement purification with quantum nondemolition detectors,” Eur. Phys. J. D 55, 235–242 (2009). [CrossRef]
- Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
- F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325(2008). [CrossRef]
- F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).
- W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
- Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307(2012). [CrossRef]
- F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012). [CrossRef]
- Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010). [CrossRef]
- P. Kok, H. Lee, and J. P. Dowling, “Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements,” Phys. Rev. A 66, 063814 (2002). [CrossRef]
- P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
- C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).
- H. Schmidt and A. Imamogdlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef]
- W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005). [CrossRef]
- T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, and R. Namiki, “Quantum cryptography using pulsed homodyne detection,” Phys. Rev. A 68, 042331 (2003). [CrossRef]
- S. H. Sun, M. Gao, M. S. Jiang, C. Y. Li, and L. M. Liang, “Partially random phase attack to the practical two-way quantum-key-distribution system,” Phys. Rev. A 85, 032304 (2012). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.