Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Blazed gain grating in a four-level atomic system

Not Accessible

Your library or personal account may give you access

Abstract

A blazed gain grating in a four-level atomic system is theoretically demonstrated. This grating is based on the spatial modulation of Raman gain, which is created by an intensity mask in the signal field. Due to the modulo-2π phase modulation, the majority of energy in the amplified probe beam can be deflected into the first-order direction, and a diffraction efficiency higher than 100% is predicted. When an intensity mask having two symmetric domains is adopted, this proposal can give a further possibility of all-optical beam splitting.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Beam splitter and router via an incoherent pump-assisted electromagnetically induced blazed grating

Yu-Yuan Chen, Zhuan-Zhuan Liu, and Ren-Gang Wan
Appl. Opt. 56(20) 5736-5744 (2017)

Efficient electromagnetically induced phase grating via quantum interference in a four-level N-type atomic system

Tayebeh Naseri and Rasoul Sadighi-Bonabi
J. Opt. Soc. Am. B 31(10) 2430-2437 (2014)

Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system

Tayebeh Naseri and Rasoul Sadighi-Bonabi
J. Opt. Soc. Am. B 31(11) 2879-2884 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved