OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 188–196

Chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering concentration measurements

Daniel R. Richardson, Robert P. Lucht, Waruna D. Kulatilaka, Sukesh Roy, and James R. Gord  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 188-196 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000188


View Full Text Article

Enhanced HTML    Acrobat PDF (1348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Concentration measurements are performed in argon–nitrogen and carbon monoxide–nitrogen binary gas mixtures at temperatures of 300 and 900 K at atmospheric pressure using femtosecond coherent anti-Stokes Raman scattering (fs CARS). Polarization suppression of the nonresonant background is also demonstrated for these concentration measurements. Single laser shot measurements at 1000 Hz are performed using a chirped probe pulse to map the temporal evolution of the Raman coherence of each species onto the spectrum of the CARS signal pulse. The pump and Stokes pulses have full width at half-maximum bandwidths of 320 and 135cm1, respectively and excite Raman transitions with frequencies over a range of 400cm1. Single laser shot fs CARS spectra are fit using a theoretical model to extract the concentration measurements. For measurements in argon–nitrogen or carbon monoxide–nitrogen gas mixtures, concentration measurements were performed over the range of 5%–90% nitrogen with typical measurement error being less than 2.0% in absolute concentration. The precision of the measurements was typically better than 1.5% in terms of absolute concentration. Nonresonant background suppression clearly revealed the resonant signals from each gas species, and concentration measurements were performed over a slightly reduced concentration range with comparable results.

© 2012 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: August 15, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 24, 2012
Published: December 18, 2012

Citation
Daniel R. Richardson, Robert P. Lucht, Waruna D. Kulatilaka, Sukesh Roy, and James R. Gord, "Chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering concentration measurements," J. Opt. Soc. Am. B 30, 188-196 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-188


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  2. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Progr. Energ Combust. Sci. 36, 280–306 (2010). [CrossRef]
  3. R. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett 12, 78–80 (1987). [CrossRef]
  4. S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004). [CrossRef]
  5. M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011). [CrossRef]
  6. A. C. Eckbreth, T. J. Anderson, and G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988). [CrossRef]
  7. M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983–988 (2007). [CrossRef]
  8. K. W. Boyack and P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multi species in turbulent flames,” Proc. Combust. Inst. 23, 1893–1899 (1991). [CrossRef]
  9. J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008). [CrossRef]
  10. S. M. Green, P. J. Rubas, M. A. Paul, J. E. Peters, and R. P. Lucht, “Annular phase-matched dual-pump coherent anti-Stokes Raman spectroscopy system for the simultaneous detection of nitrogen and methane,” Appl. Opt. 37, 1690–1701 (1998). [CrossRef]
  11. D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, and K-F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, 1992) pp. 495–511.
  12. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011). [CrossRef]
  13. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008). [CrossRef]
  14. D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011). [CrossRef]
  15. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012). [CrossRef]
  16. C. J. Kliewer, “High-spatial-resolution one-dimensional rotational coherent anti-Stokes Raman spectroscopy imaging using counterpropagating beams,” Opt. Lett. 37, 229–231 (2012). [CrossRef]
  17. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127, 044316 (2007). [CrossRef]
  18. T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry,” J. Opt. Soc. Am. B 19, 340–344 (2002). [CrossRef]
  19. A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000). [CrossRef]
  20. C. J. Strachan, M. Windbergs, and H. L. Offerhaus, “Pharmaceutical applications of non-linear imaging,” Int. J. Pharm. 417, 163–172 (2011). [CrossRef]
  21. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011). [CrossRef]
  22. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008). [CrossRef]
  23. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011). [CrossRef]
  24. A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011). [CrossRef]
  25. G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003). [CrossRef]
  26. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009). [CrossRef]
  27. S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009). [CrossRef]
  28. S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010). [CrossRef]
  29. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011). [CrossRef]
  30. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011). [CrossRef]
  31. D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley & Sons, 2002).
  32. N. M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications (Cambridge University, 2005).
  33. K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach (Springer-Verlag, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited