OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 197–204

Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide

Liang Li, Chengjie Zhu, L. Deng, and Guoxiang Huang  »View Author Affiliations

JOSA B, Vol. 30, Issue 1, pp. 197-204 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study electromagnetically induced transparency (EIT) and nonlinear pulse propagation in a resonant atomic gas confined in a microwaveguide. We find that the quantum-interference effect in this system can be greatly enhanced due to the reduction of the mode volume of the optical field. In particular, compared with atomic gases in free space, the EIT transparency window in the present confined system can be much wider and deeper, the group velocity of the probe field can be much slower, and the Kerr nonlinearity of the system can be much stronger. We show that a more efficient production of ultraslow optical solitons in the present system may be achieved with much slower propagating velocity and lower generation power. Features of EIT and pulse propagation in the present system are very promising for practical applications in optical information processing and transmission.

© 2012 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(230.7390) Optical devices : Waveguides, planar
(270.5530) Quantum optics : Pulse propagation and temporal solitons

ToC Category:
Quantum Optics

Original Manuscript: August 22, 2012
Revised Manuscript: October 31, 2012
Manuscript Accepted: November 24, 2012
Published: December 19, 2012

Liang Li, Chengjie Zhu, L. Deng, and Guoxiang Huang, "Electromagnetically induced transparency and nonlinear pulse propagation in an atomic medium confined in a waveguide," J. Opt. Soc. Am. B 30, 197-204 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  3. J. B. Khurgin and R. S. Tucker, eds., Slow Light: Science and Applications (CRC, 2009).
  4. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009). [CrossRef]
  5. M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000). [CrossRef]
  6. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003). [CrossRef]
  7. C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006). [CrossRef]
  8. Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1066 (1996). [CrossRef]
  9. L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002). [CrossRef]
  10. Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006). [CrossRef]
  11. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef]
  12. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005). [CrossRef]
  13. R. Santra, E. Arimondo, T. Ido, C. H. Greene, and J. Ye, “High-accuracy optical clock via three-level coherence in neutral bosonic Sr88,” Phys. Rev. Lett. 94, 173002 (2005). [CrossRef]
  14. M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Phys. Scr. T137, 014001 (2009). [CrossRef]
  15. S. Ghosh, J. Sharping, D. Ouzounov, and A. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005). [CrossRef]
  16. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32, 1323–1325 (2007). [CrossRef]
  17. B. Wu, J. E. Hulbert, A. R. Hawkins, and H. Schmidt, “Planar hollow-core waveguide technology for atomic spectroscopy and quantum interference in alkali vapors,” J. Lightwave Technol. 26, 3727–3733 (2008). [CrossRef]
  18. F. L. Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A 79, 013818 (2009). [CrossRef]
  19. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704(2003). [CrossRef]
  20. M. F. Saleh, W. Chang, P. Holzer, A. Nazarkin, J. C. Travers, N. Y. Joly Philip, St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011). [CrossRef]
  21. C. Hang and V. V. Konotop, “All-optical steering of light via spatial Bloch oscillations in a gas of three-level atoms,” Phys. Rev. A 81, 053849 (2010). [CrossRef]
  22. Y. Li, B. A. Malomed, M. Feng, and J. Zhou, “Arrayed and checkerboard optical waveguides controlled by the electromagnetically induced transparency,” Phys. Rev. A 82, 063813 (2010). [CrossRef]
  23. Since in our model ωp≈ωc, the mode index n can be chosen according to the value of ωp, satisfying the condition (L/πc)ωp−1<n<(L/πc)ωp.
  24. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited