OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 21–26

Elementary field representation of supercontinuum

Minna Korhonen, Ari T. Friberg, Jari Turunen, and Goëry Genty  »View Author Affiliations

JOSA B, Vol. 30, Issue 1, pp. 21-26 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the second-order coherence functions of supercontinuum (SC) in terms of elementary fields that can be obtained from measurable average quantities. The representation is based on the partition of the second-order correlation functions of SC into quasi-coherent and quasi-stationary contributions. Numerical simulations of statistical ensembles of SC pulses with different coherence properties are used to illustrate the elementary field model. Comparison with the SC coherent-mode expansion is presented, and we also simulate the propagation of the elementary fields in a dispersive fiber to demonstrate the benefits of the model.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: August 2, 2012
Manuscript Accepted: October 10, 2012
Published: December 4, 2012

Minna Korhonen, Ari T. Friberg, Jari Turunen, and Goëry Genty, "Elementary field representation of supercontinuum," J. Opt. Soc. Am. B 30, 21-26 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, ed., The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
  2. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  4. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000). [CrossRef]
  5. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002). [CrossRef]
  6. G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, “Second-order coherence of supercontinuum light,” Opt. Lett. 35, 3057–3059 (2010). [CrossRef]
  7. G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, “Complete characterization of supercontinuum coherence,” J. Opt. Soc. Am. B 28, 2301–2309 (2011). [CrossRef]
  8. C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Top. Quantum Electron. 4, 285–294 (1998). [CrossRef]
  9. M. Erkintalo, M. Surakka, J. Turunen, A. T. Friberg, and G. Genty, “Coherent-mode representation of supercontinuum,” Opt. Lett. 37, 169–171 (2012). [CrossRef]
  10. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  11. M. Bertolotti, L. Sereda, and A. Ferrari, “Application of the spectral representation of stochastic processes to the study of nonstationary light radiation: a tutorial,” Pure Appl. Opt. 6, 153–171 (1997). [CrossRef]
  12. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007). [CrossRef]
  13. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008). [CrossRef]
  14. A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in cw-pumped supercontinuum,” Opt. Express 17, 17010–17015 (2009). [CrossRef]
  15. M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Special Topics 185, 135–144 (2010). [CrossRef]
  16. A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18, 1234–1239 (2010). [CrossRef]
  17. P. Vahimaa and J. Turunen, “Independent-elementary-pulse representation for non-stationary fields,” Opt. Express 14, 5007–5012 (2006). [CrossRef]
  18. J. Turunen, “Elementary-field representations in partially coherent optics,” J. Mod. Opt. 58, 509–527 (2011). [CrossRef]
  19. A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160–5165 (2007). [CrossRef]
  20. P. Vahimaa and J. Turunen, “Finite-elementary-source model for partially coherent radiation,” Opt. Express 14, 1376–1381 (2006). [CrossRef]
  21. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).
  22. M. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010). [CrossRef]
  23. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, 1974), Chap. 23, p. 161.
  24. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989). [CrossRef]
  25. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994). [CrossRef]
  26. H. Lajunen, P. Vahimaa, and J. Tervo, “Theory of spatially and spectrally partially coherent pulses,” J. Opt. Soc. Am. A 22, 1536–1545 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited