OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 229–232

Function of a surface plasmon cavity for enhancing ultradeep subwavelength photolithography

Xu-feng Li, Xia Zhang, Ying-nan Guo, Ji-ke Meng, and Ji-lin Wei  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 229-232 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000229


View Full Text Article

Enhanced HTML    Acrobat PDF (710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A surface plasmon resonant cavity capable of enhancing ultradeep subwavelength photolithography in a large area is proposed. The cavity consists of two metal films: one is etched with periodic grooves for exciting surface plasmon resonance at the metal/dielectric interface; the other below is separated by a photoresist layer. Numerical simulations show that the properties of photolithographic patterns in the cavity can be modulated by the depth of the cavity; the physical image behind the modulation is confirmed by the phase regulation of gap surface plasmons in such a system.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(110.4235) Imaging systems : Nanolithography
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 14, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: November 28, 2012
Published: December 21, 2012

Citation
Xu-feng Li, Xia Zhang, Ying-nan Guo, Ji-ke Meng, and Ji-lin Wei, "Function of a surface plasmon cavity for enhancing ultradeep subwavelength photolithography," J. Opt. Soc. Am. B 30, 229-232 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996). [CrossRef]
  2. T. Bailey, B. Choi, M. Colburn, M. Meissl, S. Shaya, J. Ekerdt, S. Sreenivasan, and C. Willson, “Step and flash imprint lithography: template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000). [CrossRef]
  3. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ““Dip-pen” nanolithography,” Science 283, 661–663 (1999). [CrossRef]
  4. A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manufact. 26, 141–149 (2003). [CrossRef]
  5. J. Melngailis, A. Mondelli, I. L. Berry, and R. Mohondro, “A review of ion projection lithography,” J. Vac. Sci. Technol. B 16, 927–1766 (1998). [CrossRef]
  6. C. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998). [CrossRef]
  7. J. P. Silverman, “X-ray lithography: status, challenges, and outlook for 0.13 μm,” J. Vac. Sci. Technol. B 15, 2117–2124 (1997). [CrossRef]
  8. K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Localization of metastable atom beams with optical standing waves nanolithography at the Heisenberg limit,” Science 280, 1583–1586 (1998). [CrossRef]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004). [CrossRef]
  10. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett 84, 4780–4782 (2004). [CrossRef]
  11. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055–3065 (2004). [CrossRef]
  12. Z. Liu, Q. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005). [CrossRef]
  13. T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. 11, 085003–085008 (2009). [CrossRef]
  14. X. Li, S. Pan, Q. Wang, Y. Guo, and S. Wu, “Improved near field lithography with the assistance of a metallic nanostrip array,” J. Opt. 12, 115504–115510 (2010). [CrossRef]
  15. Y. Guo, X. Li, S. Pan, Q. Wang, S. Wang, and Y. Wu, “Improving lithographic masks with the assistance of indentations,” J. Opt. 21, 057301–057307 (2012). [CrossRef]
  16. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. 11, 125003–125008 (2009). [CrossRef]
  17. W. Ge, C. Wang, Y. Xue, B. Cao, B. Zhang, and K. Xu, “Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity,” Opt. Express 19, 6714–6723 (2011). [CrossRef]
  18. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  19. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2, 438–442 (2008). [CrossRef]
  20. Z. Li, Y. Yang, X. Kong, W. Zhou, and J. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. 11, 105002–105006 (2009). [CrossRef]
  21. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002). [CrossRef]
  22. Y. Cui and S. He, “A theoretical revisit of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express 17, 13995–14000 (2009). [CrossRef]
  23. R. Gordon and A. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited