OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 233–237

Teleportation of accelerated information

Nasser Metwally  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 233-237 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000233


View Full Text Article

Enhanced HTML    Acrobat PDF (258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical quantum teleportation protocol is suggested to teleport accelerated and nonaccelerated information over different classes of accelerated quantum channels. For the accelerated information, it is shown that the fidelity of the teleported state increases as the entanglement of the initial quantum channel increases. However, as the difference between the accelerations of the channel and the teleported state decreases, the fidelity of the teleported information increases. The fidelity of the nonaccelerated information increases as the entanglement of the initial quantum channel increases, while the accelerations of the quantum channel have a little effect. The possibility of sending quantum information over accelerated quantum channels is much better than sending classical information.

© 2012 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 1, 2012
Revised Manuscript: August 29, 2012
Manuscript Accepted: November 12, 2012
Published: December 21, 2012

Citation
Nasser Metwally, "Teleportation of accelerated information," J. Opt. Soc. Am. B 30, 233-237 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Unruh and R. Wald, “Acceleration radiation in interacting field theories,” Phys. Rev. D 29, 1047–1056 (1984). [CrossRef]
  2. P. Alsing, I. F. Schuller, R. Mann, and T. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006). [CrossRef]
  3. M. Han, S. Olson, and J. Dowling, “Generating entangled photons from the vacuum by accelerated measurements: quantum-information theory and the Unruh–Davies effect,” Phys. Rev. A 78, 022302 (2008). [CrossRef]
  4. J. Wang and J. Jing, “Quantum decoherence in noninertial frames,” Phys. Rev. A 82, 032324 (2010). [CrossRef]
  5. J. Said and K. Adami, “Einstein–Podolsky–Rosen correlation in Kerr–Newman spacetime,” Phys. Rev. D 81, 124012 (2010). [CrossRef]
  6. M. Montero, J. Leòn, and E. Martin-Martìnez, “Fermionic entanglement extinction in noninertial frames,” Phys. Rev. A 84, 042320 (2011). [CrossRef]
  7. J. Wang and J. Jing, “Multipartite entanglement of fermionic systems in noninertial frames,” Phys. Rev. A 83, 022314 (2011). [CrossRef]
  8. Y. Nambu and Y. Ohsumi, “Classical and quantum correlations of scalar field in the inflationary universe,” Phys. Rev. D 84, 044028 (2011). [CrossRef]
  9. M. Del Rey, D. Porras, and E. Martin-Martìnez, “Simulating accelerated atoms coupled to a quantum field,” Phys. Rev. A 85, 022511 (2012). [CrossRef]
  10. N. Friis, D. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012). [CrossRef]
  11. N. Friis, A. R. Lee, D. Bruschi, and J. Louko, “Kinematic entanglement degradation of fermionic cavity modes,” Phys. Rev. D 85, 025012 (2012). [CrossRef]
  12. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  13. S. J. van Enk and T. Rudolph, “Quantum communication protocols using the vacuum,” Quantum Inf. Comput. 3, 423–430 (2003).
  14. J. Jin, S. Park, and Y. Kown, “Quantum teleportation in three parties with an accelerated receiver” Chaos Solitons Fractals 28, 313–319 (2006). [CrossRef]
  15. A. G. S. Landulfo and G. E. A. Matsas, “Sudden death of entanglement and teleportation fidelity loss via the Unruh effect,” Phys. Rev. A 80, 032315 (2009). [CrossRef]
  16. N. Metwally, “Usefulness classes of travelling entangled channels in noninertial frames,” arXiv:1201.5941 (2012).
  17. B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000). [CrossRef]
  18. B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys B 72, 35–42 (2001). [CrossRef]
  19. E. M.-Martinez and I. Fuentes, “Redistribution of particle and anti-particle entanglement in non-inertial frames,” Phys. Rev. A 83, 052306 (2011). [CrossRef]
  20. D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010). [CrossRef]
  21. M. Aspachs, G. Adesso, and I. Fuentes, “Optimal quantum estimation of the Unruh–Hawking effect” Phys. Rev. Lett 105, 151301 (2010). [CrossRef]
  22. P. M. Alsing and G. I. Milburn, “Teleportation with a uniform accelerated partner,” Phys. Rev. Lett. 91, 180404 (2003). [CrossRef]
  23. N. Gershenfeld and I. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited