OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 51–56

Silicon quantum dot coated microspheres for microfluidic refractive index sensing

Yanyan Zhi, Torrey Thiessen, and Al Meldrum  »View Author Affiliations

JOSA B, Vol. 30, Issue 1, pp. 51-56 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electromagnetic resonances of optical microspheres—the so-called whispering gallery modes (WGMs)—can be used for refractometric sensing of surrounding fluids. Microspheres are attractive because they offer high sensitivity and can be utilized with fluorescent dyes or quantum dots. One issue with microspheres, however, is that they are difficult to integrate into microfluidic systems. Here, we develop a microfluidic structure that permits sensing applications using a single microsphere in a capillary. To achieve this, a microsphere formed on the end of a tapered fiber was first coated with fluorescent silicon quantum dots (QDs). The sphere was then inserted into a microcapillary and the fluorescence WGMs were monitored as different fluids were pumped through the channel. The sensitivity and detection limits for this sphere-in-a-capillary device were measured for several different QD film thicknesses and for two different microsphere sizes. Because of the relatively high-visibility mode structure, the sensitivity and detection limit can be defined by Fourier analysis of the free spectral range and WGM spectral shifts.

© 2012 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(230.5750) Optical devices : Resonators
(140.3948) Lasers and laser optics : Microcavity devices
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: August 28, 2012
Manuscript Accepted: October 10, 2012
Published: December 6, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Yanyan Zhi, Torrey Thiessen, and Al Meldrum, "Silicon quantum dot coated microspheres for microfluidic refractive index sensing," J. Opt. Soc. Am. B 30, 51-56 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: microfluidics toward a Lab-on-a-Chip,” Annu. Rev. Fluid Mech. 36, 381–411 (2004). [CrossRef]
  2. P. S. Dittrich and A. Manz, “Lab-on-a-Chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5, 210–218 (2006). [CrossRef]
  3. D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic Lab-on-a-Chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1158(2010). [CrossRef]
  4. Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012). [CrossRef]
  5. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006). [CrossRef]
  6. S. Yegnanarayanan, W. Roman, M. Soltani, G. Cremona, H. Lu, and A. Adibi, “On-chip Integration of Microfluidic Channels with Ultra-high Q Silicon microdisk resonators for Lab-on-a-Chip sensing applications,” in Lasers and Electro-Optics Society, The 20th Annual Meeting of the IEEE (IEEE, 2007), pp. 50–51.
  7. G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Refractometric sensor utilizing a vertically coupled polymeric microdisk resonator incorporating a high refractive index overlay,” Opt. Lett. 34, 1048–1050 (2009). [CrossRef]
  8. T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18, 5420–5425 (2010). [CrossRef]
  9. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]
  10. H. A. Huckabay and R. C. Dunn, “Whispering gallery mode imaging for the multiplexed detection of biomarkers,” Sens. Actuators B Chem. 160, 1262–1267 (2011). [CrossRef]
  11. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  12. J. Lutti, W. Langbein, and P. Borri, “A monolithic optical sensor based on whispering gallery modes in polystyrene microspheres,” Appl. Phys. A 93, 151103 (2008). [CrossRef]
  13. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express 16, 11066–11076(2008). [CrossRef]
  14. J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91, 141116 (2007). [CrossRef]
  15. H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006). [CrossRef]
  16. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef]
  17. G. Nunzi Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, P.-H. Merrer, M. Dispenza, and A. Secchi, “Coupling of angle polished waveguides to high-Q whispering gallery mode resonators,” in CLEO Europe 2011 Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC) and 12th European Quantum Electronics Conference (IEEE, 2011), p. 1.
  18. S. Gotzinger, L. de, S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004). [CrossRef]
  19. X. Fan, P. Palinginis, S. Lacey, and H. Wang, “Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors,” Opt. Lett. 25, 1600–1602 (2000). [CrossRef]
  20. H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974–1983 (2009). [CrossRef]
  21. C. P. K. Manchee, V. Zamora, J. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcavities,” Opt. Express 19, 21540–21551 (2011). [CrossRef]
  22. P. Bianucci, J. R. Rodríguez, C. Clements, C. M. Hessel, J. G. C. Veinot, and A. Meldrum, “Whispering gallery modes in silicon nanocrystal coated microcavities,” Phys. Status Solidi A 206, 973–975 (2009). [CrossRef]
  23. C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites,” J. Phys. Chem. C 111, 6956–6961 (2007). [CrossRef]
  24. C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007). [CrossRef]
  25. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007). [CrossRef]
  26. J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols+water,” J. Solution Chem. 35, 1315–1328 (2006). [CrossRef]
  27. A. Meldrum, A. Hryciw, A. N. MacDonald, C. Blois, K. Marsh, J. Wang, and Q. Li, “Photoluminescence in the silicon-oxygen system,” J. Vac. Sci. Technol. A 24, 713 (2006). [CrossRef]
  28. L. Ferraioli, M. Wang, G. Pucker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, “Photoluminescence of silicon nanocrystals in silicon oxide,” J. Nanomater. 2007, 43491(2007). [CrossRef]
  29. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010). [CrossRef]
  30. I. Teraoka and S. Arnold, “Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer,” J. Opt. Soc. Am. B 23, 1434–1441 (2006). [CrossRef]
  31. I. Teraoka, and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653–659 (2007). [CrossRef]
  32. Y. Zhi, C. P. K. Manchee, J. W. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric Sensing with Silicon Quantum Dots Coupled to a Microsphere,” Plasmonics doi: 10.1007/s11468-012-9423-8 (posted online 21 August 2012, to be published). [CrossRef]
  33. J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for sensing with microcavities,” Opt. Express 20, 8284–8295 (2012). [CrossRef]
  34. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008). [CrossRef]
  35. S. McFarlane, C. P. K. Manchee, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Development of fluorescent-core microcavity biosensors,” Sensor Letters (EMRS-2012 symposium Q, in review).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited