OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 71–78

Efficient entanglement concentration for arbitrary single-photon multimode W state

Lan Zhou, Yu-Bo Sheng, Wei-Wen Cheng, Long-Yan Gong, and Sheng-Mei Zhao  »View Author Affiliations

JOSA B, Vol. 30, Issue 1, pp. 71-78 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We put forward an efficient entanglement concentration protocol (ECP) for recovering the single-photon less-entangled W state into the maximally entangled W state with only two conventional auxiliary photons. The ECP includes two local steps, both of which are based on the weak cross-Kerr nonlinearities and the variable beam splitter (VBS). Benefiting from the cross-Kerr nonlinearities and the VBS, the ECP can be used repeatedly to further concentrate the less-entangled W state. All the advantages indicate that our protocol may be feasible and convenient in current quantum communications areas.

© 2012 Optical Society of America

OCIS Codes
(270.4180) Quantum optics : Multiphoton processes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: August 16, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 28, 2012
Published: December 6, 2012

Lan Zhou, Yu-Bo Sheng, Wei-Wen Cheng, Long-Yan Gong, and Sheng-Mei Zhao, "Efficient entanglement concentration for arbitrary single-photon multimode W state," J. Opt. Soc. Am. B 30, 71-78 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  5. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394 (1998). [CrossRef]
  6. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
  7. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  8. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  9. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  10. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  11. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  12. S. Tan, D. Walls, and M. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991). [CrossRef]
  13. L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73, 2279–2283 (1994). [CrossRef]
  14. A. Peres, “Nonlocal effects in Fock space,” Phys. Rev. Lett. 74, 4571–4571 (1995). [CrossRef]
  15. C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901–167904 (2002). [CrossRef]
  16. Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902–167905 (2002). [CrossRef]
  17. M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum state engeneering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003). [CrossRef]
  18. G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001). [CrossRef]
  19. G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404–270407 (2001). [CrossRef]
  20. A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998). [CrossRef]
  21. J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003). [CrossRef]
  22. T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003). [CrossRef]
  23. O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003). [CrossRef]
  24. A. SenDe, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003). [CrossRef]
  25. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
  26. R. Chaves, and L. Davidovich, “Robustness of entanglement as a resource,” Phys. Rev. A 82, 052308 (2010). [CrossRef]
  27. L. Heaney, A. Cabello, M. F. Santos, and V. Vedral, “Extreme nonlocality with one photon,” New J. Phys. 13, 053054–053065(2011). [CrossRef]
  28. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  29. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
  30. S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
  31. B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
  32. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  33. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  34. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).
  35. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  36. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  37. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  38. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
  39. C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A 86, 012323 (2012). [CrossRef]
  40. H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, “Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED,” Quantum Inf. Process. 11, 431–441 (2012). [CrossRef]
  41. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three photon W states,” J. Opt. Soc. Am. B 27, 2159–2164(2010). [CrossRef]
  42. W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
  43. A. Yildiz, “Optimal distillation of three-qubit W states,” Phys. Rev. A 82, 012317 (2010). [CrossRef]
  44. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
  45. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 044302 (2012). [CrossRef]
  46. F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012). [CrossRef]
  47. B. Gu, “Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics,” J. Opt. Soc. Am. B 29, 1685–1689 (2012). [CrossRef]
  48. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-nOT gate,” Phys. Rev. Lett. 93, 250502(2004). [CrossRef]
  49. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]
  50. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005). [CrossRef]
  51. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  52. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  53. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009). [CrossRef]
  54. Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A 82, 022331 (2010). [CrossRef]
  55. B. He, Y. Ren, and J. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009). [CrossRef]
  56. B. He and J. A. Bergou, “Entanglement transformation with no classical communication,” Phys. Rev. A 78, 062328 (2008). [CrossRef]
  57. B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011). [CrossRef]
  58. C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012). [CrossRef]
  59. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994). [CrossRef]
  60. B. He, J. A. Bergou, and Z. Wang, “Implementation of quantum operations on single-photon qudits,” Phys. Rev. A 76, 042326 (2007). [CrossRef]
  61. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef]
  62. C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).
  63. W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum- nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited